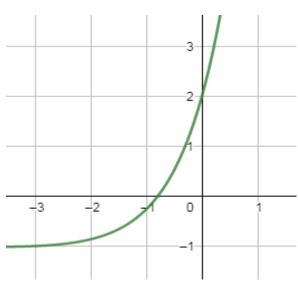
يوم: 2019/12/01

المدة: ساعتان

الاختبار المحروس الأول في مادة الرياضيات



التمرين الأول

 $f(x)=(x+3)e^x-1$ لتكن f الدالة المعرفة على $\mathbb R$ با

ليكن تمثيلها البياني كما هو في الشكل المقابل. بقراءة بيانية:

- 1- أوجد نهايتي الدالة f عند طرفي مجموعة التعريف.
 - f شكل جدول تغيرات الدالة f
- \mathbb{R} على α تقبل حلا وحيدا a على a على a تقبل حلا وحيدا a على a
 - -0.8 < lpha < -0.7 تحقق حسابيا أن -4
 - f استنتج اشارة الدالة f
- . وليكن g الدالة المعرفة على $\mathbb R$ ب (e^x-1) بالدالة المعرفة على $\mathbb R$ بالدالة المعرفة على الدالة الدا
 - 1- أوجد نهايتي الدالة g عند طرفي مجموعة التعريف.
 - .g بين أنه من أجل كل عدد حقيقي x لدينا: g'(x)=f(x)، ثم شكل جدول تغيرات الدالة -2
 - $-\infty$ بجوار (C_g) بجوار مائل للمنحنى y=-x-2 مقارب مائل للمنحنى .-(d) بجوار -3
 - (d) و (C_g) درس الوضعية النسبية بين (C_g)
 - (0,0) عند النقطة (T) مماس المنحنى (C_g) عند النقطة -5
 - (d) عين معادلة (Δ) مماس المنحنى (C_g) والذي يوازي المستقيم -6
 - $(O;ec{t},ec{f})$. (Δ) و (C_g) في معلم متعامد ومتجانس (Δ) . (Δ) . (Δ)
 - $(x+2)e^x=3x+m$ ناقش بيانيا حسب قيم الوسيط m عدد وإشارة حلول المعادلة -8

التمرين الثاني

$$f(x)=1+x-\ln x$$
 باكن f الدالة المعرفة على $]0,+\infty$ با

.f أدرس تغيرات الدالة f، ثم شكل جدول تغيراتها، ثم استنتج إشارة الدالة f

$$g(x) = \left(1 + \frac{1}{x}\right) \ln x$$
 يعتبر g الدالة المعرفة على $]0, +\infty$ بيا

- 1- أحسب نهايتي الدالة g عند طرفي مجموعة التعريف.
- $g'(x) = \frac{f(x)}{x^2}$ بين أنه من أجل كل عدد حقيقي موجب x لدينا -2
 - .- أدرس تغيرات الدالة g ثم شكل جدول تغيراتها.
- .1 عند النقطة ذات الفاصلة (C_g) مماس المنحنى النقطة ذات الفاصلة -4
 - رسم (C_g) و (T) في معلم متعامد ومتجانس.

الصفحة 02/01

التمرين الثالث

$$h(x)=rac{x+4}{x+1}$$
 لتكن h الدالة المعرفة على $]-1,+\infty$ بيا لتكن الدالة المعرفة على \star

- 1) أدرس تغيرات الدالة f، ثم شكل جدول تغيراتها.
- $(0; ec{t}, ec{j})$ مثل بدقة التمثيل البياني للدالة h على معلم متعامد ومتجانس (2

$$V_{n+1}=h(V_n)$$
 و $V_0=0$ بعتبر المتتالية (V_n) المعرفة من أجل كل عدد حقيقي n ب

- . (V_n) في نفس الرسم السابق مثل على محور الفواصل الحدود الأولى للمتتالية (3).
 - 4) خمن اتجاه تغير المتتالية (V_n) وتقاربها.
 - $0 \leq V_n \leq 4$ بين أنه من أجل كل عدد طبيعي n فإن: (5
 - رس اتجاه تغير المتتالية (V_n) أدرس

$$U_n = rac{2-V_n}{V_n+2}$$
 بعتبر المتتالية n بالمعرفة من أجل كل عدد حقيقي n بعتبر المتتالية $lacksquare$

- $.U_0$ يين أن المتتالية (U_n هندسية عين أساسها وحدها الأول (7
 - n أكتب بدلالة n عبارة U_n ، ثم استنتج عبارة الالة v_n بدلاله (8
 - $\lim V_n$ أحسب (9

$$W_n=\ln \lvert U_n
vert$$
نعتبر المنتالية (W_n) المعرفة من أجل كل عدد حقيقي n ب

$$W_n$$
 تحقق أن المتتالية (W_n) حسابية، عين أساسها، حدها الأول W_0 وعبارة حدها العام (10

11) أحسب بدلالة n المجاميع الآتية:

$$S_n = U_0 \times U_1 \times ... \times U_n$$

$$S'_n = U_0^2 + U_1^2 + \dots + U_n^2$$