الجمهورية الجزائرية الديمقراطية الشعبية

مديرية التربية لولاية البليدة

وزارة التربية الوطنية

دورة : ماى 2021

امتحان بكالوريا التعليم الثانوي التجريبي

الشعبة: علوم تجريبية

اختبار في مادة: العلوم الفيزيائية الختبار في مادة: العلوم الفيزيائية

على المترشح أن يختار أحد الموضوعين التاليين

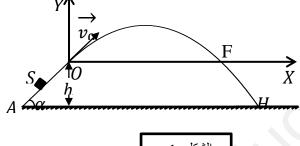
الموضوع الأول

الجزء الأول (13 نقطة):

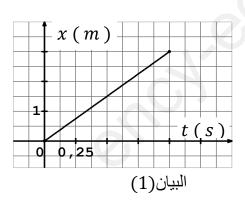
التمرين الأول (07 نقاط):

1- نقذف جسما ($m{S}$) كتلته mنعتبره نقطيا من نقطة A تقع أسفل مستوي أملس يميل عن الأفق بزاوية m ، وفق خط الميل الأعظمي بسرعة $m{v}_0$ كما هو مبين في الشكل $m{v}_0$.

أ - مثّل القوى المؤثرة على الجسم (S) .


(S) بتطبيق القانون الثاني لنيوتن على الجسم (S) أوجد عبارة تسارع الحركة على المسار (S) .

+ - ما طبيعة الحركة على المسار AO ؟ مع التعليل.


2 − حركة الجسم بعد النقطة 2

يمثل البيان (1) تغيرات فاصلة القذيفة χ بدلالة الزمن t، و يمثل البيان (2) تغيرات المركبة الشاقولية v_v لسرعة القذيفة بدلالة الزمن t:

باعتبار اللَّحظة التي يصل فيها الجسم (S) إلى الموضع مبدأ للأزمنة t=0، و بإهمال الهواء.

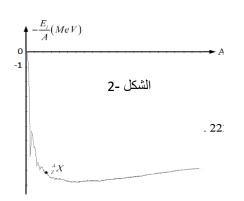
الشكل -1 -

البيان (2)

أ - أدرس حركة الجسم بعد مغادرته النقطة $m{o}$ (المعادلات الزمنية وفق المحورين (ox) و (ox) مع تحديد طبيعة الحركة في كل محور) v_{0x} ب - مستعينا بالبيانين v_{0y} و v_{0x} و v_{0x} مركبتي شعاع السرعة عند النقطة v_{0x} ، ثم أحسب طويلته.

lpha - أحسب قيمة الزاوية

صفحة 1 من 8


A0=1,5m علما أن A علما أن A

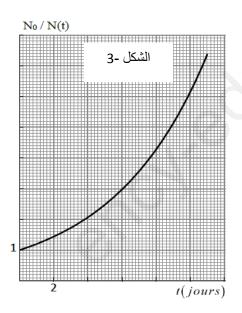
(0x, 0y) في المعلم ((S)) في المعلم ((S)) في المعلم ((S)).

ب - حدّد بعد النقطة Fعن النقطة O (المدى الأفقى للقذيفة).

 $g=10m.\,s^{-2}$. يعطى: H نقطة اصطدام القنيفة بسطح الأرض يعطى: H

التمرين الثاني (06 نقاط):

1 – الرادون 222 $(^{22}_{84}Po)$ نواة مشعة α ، تعطي نواة البولونيوم $(^{22}_{2}Rn)$. الرادون هو غاز أحادي الذرة ، و نعتبره غاز ا مثاليا . خلال تفكك الرادون 222 يحدث انبعاث اشعاع (γ)


أ – ما هو مصدر الاشعاع () ؟ ما طبيعة الجسيم lpha؟ اكتب معادلة تفكك الرادون 222 .

NZب حدد الانتقال النووي لنواة الرادون 222 على مخطط سيغري (NZ) .

- عرف طاقة التماسك لكل نوكليون للنواة ${22} \choose {2}$ ، ثم احسب طاقة التماسك لكل نوكليون لنواة الرادون - 222 .

-2د – قارن استقرار نواة الرادون 222 مع النواة ($AX \choose Z$) الممثلة على منحني أستون (الشكل -2 –).

T=303K و عند درجة حرارة قدر ها V=0.4mL و عند درجة حرارة قدر ها و t=0

عدد N(t) هو عدد N(t) عدد N(t) بدلالة الزمن N(t) هو عدد N(t) هو عدد

t=0 هو عدد أنوية الرادون المتبقية عند اللحظة N_0 هو عدد أنوية الرادون عند اللحظة

 N_0 أ N_0 المنتقج الموجودة داخل الأنبوبة ، ثم استنتج العدد الابتدائي للأنوية أ

t بدلالة الزمن $\frac{N}{N(t)}$ بدلالة الزمن.

. البيان البيان العمر t العينة مشعة ، ثم جد قيمته باستعمال البيان t

 $t=10\ jrs$ عينة الرادون 222 في الأنبوبة في اللحظة $t=10\ jrs$ ؟

4 — حدد مستعينا بالبيان اللحظة التي يكون عندها قد تفكك $\frac{3}{4}$ من العينة الموجودة في الانبوبة تأكد من ذلك حسابيا .

 $mig(^{222}_{~Z}Rnig)=221,9704u$; $m_p=1,00727u$: تامعطیات

 $m_n = 1,00866u$; $1u = 931,5 MeV/C^2$

m R=8,31~SI المثالية ; $N_A=6,023 imes 10^{23}~mol^{-1}$

الجزء الثاني:

تمرین تجریبی (07 نقاط):

 $H_2C_2O_{4(aq)}=CO_{2(g)}+HCOOH_{(aq)}$: حمض الأكساليك $H_2C_2O_4$ يتفكك ذاتيا وفق تحول تام ينمذج بالمعادلة التائج المدونة في الجدول التالي $m{m}=0,18g$ تتابع التفكك لكتلة $m{m}=0,18g$

t(min)	0	5	11,6	20	35	56,7	75
x(mmol)	0	0, 17	0,37	0, 58	0,89	1,20	1,37

أ – أثبت أن التفاعل الحادث هو تفاعل أكسدة - إرجاع مع تحديد الثنائيتين (Ox/Red) الداخلتين في التفاعل .

t بدلالة الزمن بالبياني الممثل لتغيرات تقدم التفاعل x بدلالة الزمن

 $t_{1/2}$ ج حدد زمن نصف التفاعل $t_{1/2}$ ، ثم احسب سرعة التفاعل عند اللحظة -

د ـ استنتج كتلة حمض الميثانويك HCOOH الناتجة في نهاية التفاعل

V - نذیب حمض المیثانویك المتحصل علیه عند نهایهٔ التغاعل السابق في حجم V من الماء المقطر فنحصل على محلول حمضي

pH=2,9 قياس الpH له عند التوازن أعطى ، $C=10^{-2} mol/L$ تركيزه المولي

أ - اكتب معادلة انحلال حمض الميثانويك في الماء .

. أحسب قيمته ، $Ka = \frac{10^{-2pH}}{c-10^{-pH}}$: أحسب قيمته ، أحسب قيمته ،

HCOOH و حمض الميثانويك $H_2C_2O_4$ و حمض الميثانويك

 $pKa(H_2C_2O_4/HC_2O_4^-)=1,2;\; M_C=12g/mol\;; M_0=16g/mol\;; M_H=1g/mol\;:$ المعطيات

 $3,16 imes 10^{-3} mol/l$ يساوي OH^- يساوي CH_3NH_2 تركيزه المولي بشوارد OH^- يساوي OH^- تركيزه المولي بشوارد

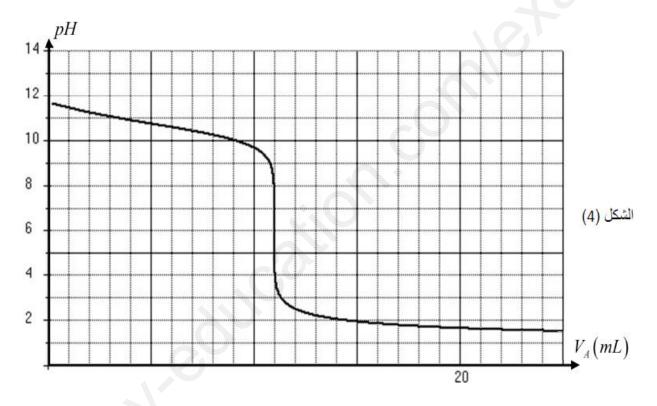
 $au_f=13,73\%$ و نسبة تقدمه النهائي

أ – احسب pH هذا المحلول و بين طبيعته

ب - اكتب معادلة انحلاله في الماء ، ثم انجز جدول تقدم التفاعل

. C_b على الشكل : $au_f=rac{K_e}{C_b.[H_3O^+]}$: على الشكل : $au_f=rac{K_e}{C_b.[H_3O^+]}$. ثم احسب قيمة

4 — نعاير حجما $V_b=22,4ml$ من محلول مائي لإثيل أمين ذي التركيز C_b المحسوب سابقا بمحلول حمض كلور الماء $V_b=22,4ml$ تركيزه المولي $D_b=22,4ml$ المربح التفاعلي ، تحصلنا على البيان الممثل في الشكل $D_a=4$ بقياس $D_a=4$ المربح التفاعلي ، تحصلنا على البيان الممثل في الشكل $D_a=4$ المربح معادلة تفاعل المعايرة

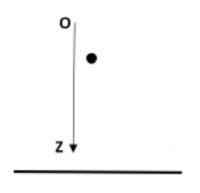

 $(CH_3NH_3^+/CH_3NH_2)$ ب pKa الثنائية والمائية بنام استنتج ثابت الحموضة والمائية التكافؤ والمائية بنام المائية والمائية المائية ا

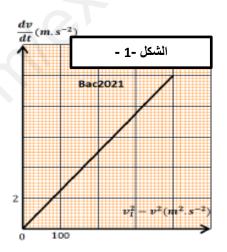
ج – تأكد من قيمة التركيز $oldsymbol{\mathcal{C}_h}$ المحسوبة سابقا

د - احسب ثابت التوازن K لهذا التفاعل ، ماذا تستنتج ؟

، ماذا تستنتج و المحلول الحمضي ، ماذا تستنتج $V_a=8ml$ عند إضافة $V_a=8ml$ عند إضافة عند إصلام النسبة $V_a=8ml$

و - في حالة إجراء معايرة لونية ، ما المعيار الذي تعتمده في اختيار احسن كاشف ملون ؟


انتهى الموضوع الاول


الموض وع الشاني

الجزء الأول (13 نقطة):

التمرين الأول (07 نقاط):

تسقط كرة حديدية متجانسة كتلتها و نصف قطرها r=1,5cm ابتداء من السكون عند لحظة زمنية نعتبرها مبدأ للأزمنة t=0 من ارتفاع t=0 عن سطح الأرض وفق محور شاقولي t=0 موجه نحو الأسفل . تخضع الكرية أثناء سقوطها خود t=0 من ارتفاع t=0 من الربيان t=0 مكنتنا دراسة حركة الكرة من رسم البيان t=0 بدلالة t=0 المبين في الشكل و تعديد من رسم البيان عبين المبين في الشكل t=0 المبين في الشكل t=0 المبين في الشكل و تعديد من رسم البيان عبين في الشكل و تعديد من رسم البيان و تعديد و تعديد من رسم البيان و تعديد و تعديد من رسم البيان و تعديد و ت

- . 1 مثل كيفيا القوى المؤثرة على الكرية عند t=0 و عند لحظة زمنية t أثناء الحركة.
 - . مهملة أمام الثقل π مهملة أمام الثقل π
- $rac{dv}{dt} = rac{K}{m} \; (v_L^2 v^2) \; \; :$ يتطبيق القانون الثاني لنيوتن اثبت ان المعادلة التفاضلية للسرعة تكتب على الشكل المعادلة التفاضلية المعادلة ا
 - $m{m}$ عادلة البيان الممثل في الشكل -1 ، ثم احسب كتلة الكرية -4
 - . حدد قيمته K باستعمال التحليل البعدي أوجد وحدة الثابت K ، ثم حدد قيمته .
 - au أوجد قيمة السرعة الحدية ، v_L ، ثم استنتج قيمة ثابت الزمن -6
 - t بدلالة الزمن v بدلالة الزمن ، مثل كيفيا منحنى تغيرات السرعة v بدلالة الزمن v
 - 8- كيف يصبح هذا المنحنى عند اهمال تأثير الهواء ؟ مثله كيفيا مع التعليل .

$$g=10~m/S^2~$$
 ; $ho_{air}=1$, $3Kg/m^3$; $ho_{fer}=7$, $8g/cm^3$; $V=rac{4}{3}\pi r^3~$: المعطيات

التمرين الثاني: (06 نقاط)

pH=4,5 هيمة ال pH لهذا المحلول هي C_{a} تركيزه المولى محلول مائي C_{a} لهذا المحلول هي C_{a} تركيزه المولى C_{a} تركيزه المولى عرف الحمض حسب برونشتد C_{a}

2 - اكتب معادلة انحلال حمض البروبانويك في الماء

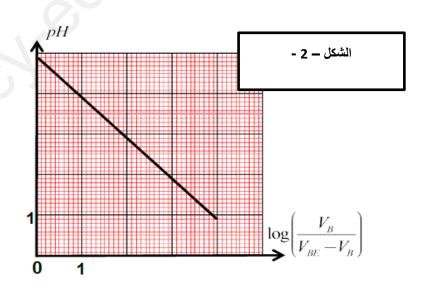
 au_f عبر عن pH المحلول S_a بدلالة pKa ثابت الحموضة للثنائية pKa ثابت الحموضة للثنائية ونسبة التقدم النهائي pKa

$$au_f = rac{1}{1+10^{pKa-pH}}$$
 : الشكل على الشكل au_f تكتب على الشكل -4

 $(Na^+;OH^-)$ من المحلول الحمضي S_a و نعايره بواسطة محلول مائي S_b لهيدروكسيد الصوديوم $V_a=20ml$ من المحلول الحمضي $V_a=20ml$ المختاف ، اعتمادا على النتائج المحصل عليها تم رسم المنحنى تركيزه المولي C_b نتابع تغير D_b المختاف التكافؤ و D_b الحجم المضاف عند نقطة التكافؤ و D_b الحجم المضاف عند نقطة التكافؤ D_b

أ — اكتب معادلة تفاعل المعايرة 🔍

ب ـ اعط عبارة تراكيز الأفراد الكيميائية الموجودة في المزيج التفاعلي قبل نقطة التكافؤ .


.
$$(C_2H_5COOH\ /C_2H_5COO^-)$$
 جيث pKa جيث $pH=pKa+\log(rac{V_b}{V_{bE}-V_b})$ ب $-$ بين أن

$$pKa$$
 من اجل إضافة حجم $V_b=rac{V_{bE}}{2}$ من اجل إضافة حجم pH ة من استنتج عبارة

د - جد الحجم V_{bE} المضاف عند التكافؤ ، علما أن قيمة الpH هي q عند إضافة v_{bE} من المحلول الأساسي

ه – استنتج نسبة التقدم النهائي au_f لتفاعل حمض البروبانويك مع الماء

 $oldsymbol{\mathcal{C}_b}$ و - أوجد التركيز المولي $oldsymbol{\mathcal{C}_a}$ ثم استنتج التركيز المولي

الجزء الثاني:

تمرین تجریبی (07 نقاط):

في حصة الأعمال التطبيقية اقترح الأستاذ على تلاميذه الدارة الكهربائية الممثلة في الشكل المقابل و ذلك من أجل تعيين خصائص ثنائيات الاقطاب التالية:

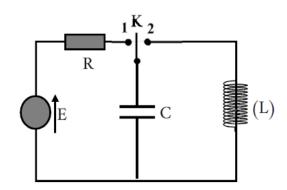
E مولد للتوتر قوته المحركة الكهربائية

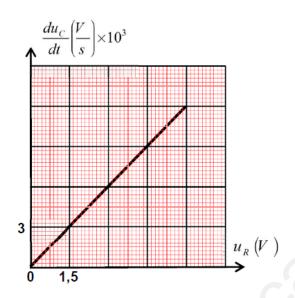
مكثفة سعتها c ، وشيعة ذاتيتها d و مقاومتها الداخلية مهملة

 $R=100\Omega$ ناقل أومى مقاومته

التجربة الأولى: عند لحظة t = 0 نضع البادلة في الوضع (1)

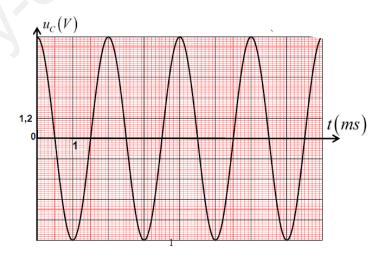
c اكتب المعادلة التفاضلية بدلالة التوتر c بين طرفي المكثفة


حل لهذه المعادلة التفاضلية $c(t) = E(1-e^{t/ au})$ حل الهذه المعادلة التفاضلية -2


au و $oldsymbol{U}_R$ و $oldsymbol{U}_R$ و $oldsymbol{U}_R$ و $oldsymbol{U}_R$ و $oldsymbol{U}_R$

t بدلالة الزمن برسم البيان بدلالة الزمن بدلالة الزمن بدلالة الزمن برسم البيان بدلالة الزمن برسم البيان بدلالة الزمن ب

 $oldsymbol{c}$ ، ثم استنتج سعة المكثفة أ- جد قيمة ثابت الزمن


 $oldsymbol{E}$ ب – أوجد القوة المحركة الكهربائية

التجربة الثانية:

بعد شحن المكثفة تماما و بلوغ الدارة مرحلة النظام الدائم ، ننقل البادلة في الوضع (2) عند لحظة زمنية نعتبرها مبدأ للأزمنة يسمح راسم الاهتزاز المهبطي من اظهار السان الممثل لتطور التوتر U_c بين طرفي المكثفة الممثل في الشكل التالي :

- $oldsymbol{U_{C}}$ عد رسم الدارة مبينا كيفية ربط راسم الاهتزاز لمشاهدة التوتر -1
 - 2 ما هي الظاهرة التي تحدث ؟ حدد نمطها
- قا بين طرفي المكثفة U_{C} بين طرفي المكثفة التوتر U_{C}
 - $U_{\mathcal{C}}(t) = Ecos(\omega_0 t)$: حل هذه المعادلة من الشكل 5
 - أ أوجد عبارة $oldsymbol{\omega_0}$ النبض الذاتي بدلالة مميزات الدارة
- . L عبارته بدلالة مميزات الدارة و استنتج ذاتية الوشيعة عبارته بدلالة مميزات الدارة و استنتج ذاتية الوشيعة
 - t منية الطاقة الكلية للدارة E_T ، ثم بين انها ثابتة عند أي لحظة زمنية t
- L'=2L على ورقة الإجابة في حالة استعمال وشيعة مثالية ذاتيتها $U_{c}(t)$ على ورقة الإجابة في

بالتوفيق و النجاح في شهادة البكالوريا