الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

السنة الدراسية : 2020/2019 المدة : 120دقيقة ثانوية 1014 مسكنا

المستوى: 3 ع ت

اختبار الثلاثي الثاني في مادة العلوم الفيزيائية

التمرين 01:

الجزء الأول: هدف الدراسة شحن و تفريغ مكثفة.

المجموعة الاولى: تحقق دارة كهربائية كما في الشكل (1).

1- سم العناصر (1) , (2) , (3) , (5) .

2- ما دور العنصر (1) .

العنصر (1) يغدي الدارة بتيار كهربائي ثابت في الشدة $I=94\mu A$, التوتر بين طرفى المكثفة فنحصل على البيان التالى

1- أحسب الشحنة التي يحملها اللبوس B في اللحظة t=5s.

2- عرف سعة المكثفة .

 $C = 47 \mu F$ باستغلال البيان (1) بين أن سعة المكثفة -3

t=25s عند خزنها المكثفة عند -4

الجزء الثاني : المجموعة الثانية : تحقق الدارة المبينة في الشكل(3)

- مولد توتره الكهربائي E

- مكثفة سعتها C₁ .

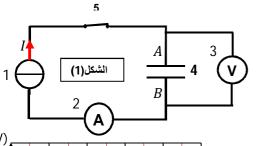
. K و قاطعة R مقاومة R قيمتها R

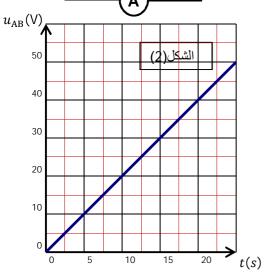
عند اللحظة t=0 المكثفة فارغة . نغلق الدارة و بواسطة راسم الاهتزاز المهبطي نحصل على البيانيين (الشكل(4))

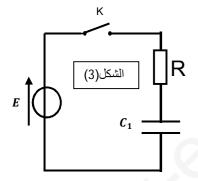
1- أ. صف الظاهرة الفيزيائية التي تحدث .

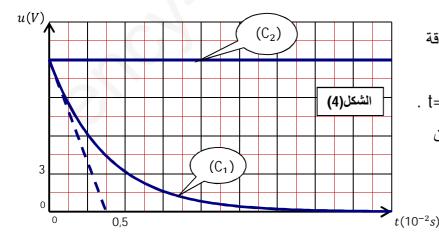
ب. أرسم الدارة و بين كيف يتم توصيل راسم الاهتزاز المهبطى للحصول على

. (C_2) و (C_1) البيانيين

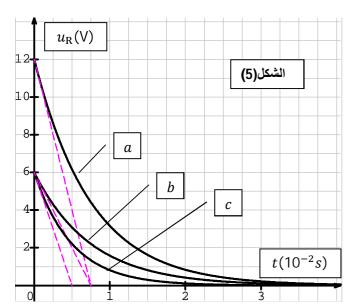

2- أ. أثبت ان في اللحظة † ، شدة التيار يحق العلاقة


 $i(t) = -C_1 \frac{du_R(t)}{dt}$:التالية


ب. احسب قيمة شدة التيار i(0) عند اللحظة t=0


ج. اوجد المعادلة التفاضلية التي يحققها التوتر بين

. $u_R(t)$ طرفي الناقل الاومي


- 3- أ. تحقق أن حل المعادلة التفاضلية السابقة هو $Ee^{-t/ au}: u_R(t) = Ee^{-t/ au}$ محددا عبارة au بدلالة ثوابت الدارة.
 - ب. أوجد بيانيا قيمة ثابت الزمن au محددا الطريقة المتبعة لذلك.
 - . C_1 عنه المكثفة ج. احسب قيمة سعة المكثفة
 - C_1 و C_1 د. قارن قيمة السعتين
 - . $u_c(t)$ على عبارة $u_R(t)$ استنتج عبارة $u_R(t)$
 - ب. ارسم كيفيا بيان $u_c(t)$ محددا القيم المميزة له.
 - ج. احسب الطاقة المخزنة في المكثفة عند النظام الدائم.

الجزء الثالث:

أحد تلاميذ الجزء الثاني حقق ثلاث تجارب (a),(c), (a), حيث قام بتغيير المقادير E,R,C_1 , ثم تابع تطور U_R بدلالة الزمن فنحصل على الشكل (5).

- حلل مختلف البيانات ثم أكمل الجدول

التجربة			
E (V)		6	•••••
R (Ω)	750		375
C (µF)	1		2
$I_0(mA)$	8	16	

التمرين02:

المعطيات:

- . $Ke = 14 \cdot 25^{0}$ C كل التجارب منجزة في درجة حرارة ثابتة ومساوية \bullet
 - نهمل في كل الحالات الشوارد الناتجة من التفكك الذاتي للماء. $\tau_f \leq 5 \times 10^{-2} \ .$ نهمل $[OH^-]$ أمام C لما نهمل الماء.

الجزء الأول:

. $C_0 = 10^{-1} mol.\,L^{-1}$ لنحضير ثلاث محاليل مائي (S_2) , (S_2) , (S_1) و

يعطي لنا ثلاث أسس (B_1) , (B_2) , (B_3) و (B_3) على الترتيب في الماء المقطر ، نتائج قياس الـ PH لهذه المحاليل المحضرة سابقا مدونة في الجدول التالي:

- (S_3) (S_2) (S_1) (S_1) (S_2) (S_3) (S_4) $(S_4$
- PH

 11.9

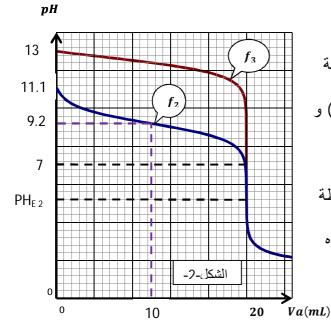
 11.4

 10.9

 Log C

 -2

 -1
- ي. أثبت أن (B_{3}) و (B_{2}) أنها أسس ضعيفة أما (B_{3}) أساس قوي. (B_{1})
- 2. ان قياس الـ PH أثناء التمديد للمحلول (S_1) من أجل قيم مختلفة للتركيز C بين C^{-1} بين C^{-1} المال C^{-1} و C^{-1} المبين في الشكل C^{-1} المبين في الشكل C^{-1} أ. أثبت أن معادلة البيان تكتب على الشكل أ


. b محددا a محددا b و $PH = b + a \log C$

 (B_1H^+/B_1) ب. احسب قيمة PKa للثنائية

الجزء الثاني:

عند أخذ نفس الحجم $V_{B2}=10m$ من المحلول (S_2) و $V_{B3}=10m$ من المحلول $V_{B2}=10m$ ، نضيف في كل مرة محلول مائي لحمض النتريك HNO_3 (حمض قوي) ذو تركيز مولي $PH=f(V_A)$. قياس الـ $PH=f(V_A)$ من المحلول الحمضي ، تم رسم في كل حالة المنحنى V_A من المحلول الحمضي ، تم رسم في كل حالة المنحنى V_A

لياس الـ f_1 بعد كل إصافه خجم V_A من المحلول الحمصي ، ك المنحنيين f_2 و f_3 المتحصل عليهما تم تمثيلهما في الشكل f_3 .

- 1. عين المنحنى f_3 الخاص بقياس ال PH للمزيج الناتج من المحلول (S_3) والمحلول الحمضي لحمض النتريك
- ين إحداثيتي نقطة التكافؤ الخاص بالمنحنى S_3 ، ثم استنتج قيمة . C_4
- و. (B_2H^+/B_2) و PK_{a2} اوجد قيمة PK_{a2} الثنائية B_2 المنحنى و B_2 المنحنى و B_2 اضعف من الأساس و B_2 المنافق و B_2
 - 4. اكتب معادلة تفاعل الأساس B_2 مع حمض النتريك واثبت أن التفاعل تام.
- 5. اثبت دون اجراء الحساب أن المحلول الناتج عند التكافؤ في النقطة E_2
- 6. أحسب PH_{E2} للمزيج الناتج عند التكافؤ حيث ان الـ PH في هذه الشروط يعطى بالعلاقة:

هو:C حيث $PH = \frac{1}{2}(PK_{a2} - Log C)$ هو التركيز المولى للحمض B_2H^+ عند التكافؤ

من إعجاء الأستاذ: مسعود ساعى