ثانوية الإخوة دراوي - بومرداس

ماي 2019 المدة: 4 ساعات إمتحان الباكالوريا التجريبي في مادة هندسة الطرائق

الشعبة: تقني رياضي الفوج: 3 هـ ط

على المترشح أن يختار أحد الموضوعين التاليين

الموضوع الأول

التمرين الأول

I- يتم تحضير استر نكهة العنب بتفاعل بين الميثانول و حمض عضوي E و الذي يحضر انطلاقا من مشتق هالوجيني A صيغته R-Cl و كثافة بخاره بالنسبة للهواء هي 1.741

C:12g/mol

Cl :35.5g/mol

H:1g/mol

N:14g/mol

اوجد صيغة المركب $oldsymbol{\Lambda}$ علما أن \cdot

 $_{2}$ - إنطلاقا من المركب $_{1}$ نجري سلسلة من التفاعلات التالية لتحضير الاستر $_{1}$

1)
$$+$$
 A $\frac{AlCl_3}{}$ B + HCl

2) B +
$$HNO_3$$
 $\xrightarrow{}$ C + H_2O

3) C
$$\frac{\text{KMnO}_4}{\text{H}_2\text{SO}_4}$$
 D + H₂C

4) D
$$\frac{\text{HCl/Fe}}{}$$
 E + 2H₂O

5) E +
$$H_3C$$
-OH $\xrightarrow{H_2SO_4}$ F H_2O

أ- حدد صيغ المركبات من A إلى F.

ب- ما نوع التفاعل 2 مع ذكر الوسيط؟

ج- أحسب الكتلة الحمض ${f E}$ الابتدائية للحصول على ${f 0.12mol}$ من الاستر ${f F}$ علما أن المزيج متساوي المولات.

II- من خلال اماهة الاستر المتشكل F تحصلنا على النتائج المبينة في الجدول

t (s)	0	200	400	600	800
[F]*10 ⁻² mol/L	5	3.52	2.36	1.69	1.20

1- بين ان التفاعل من الرتبة الاولى

2- أحسب ثابت السرعة K.

3 أحسب زمن نصف التفاعل

التمرين الثاني

COOH

I- مادة دهنية تتكون من حمض دهني A تمثيله الطوبولوجي

وثلاثي غليسريد متجانس حمضه الدهني المتشكل منه ناتج عن هدرجة الحمض A.

1- اوجد صيغة الحمض الدهني A وثلاثي غليسريد

2- أحسب Ie و Ia ثم استنتج Is

3- تتعرض المادة الدهنية لعملية الاكسدة : ١- اكتب معادلة الاكسدة

ب- كم تصبح Ia ؟ ماذا تستنتج ؟

K: 39g/mol H: 1g/mol C=12g/mol

I: 127g/mol

O=16g/mol

إمتحان الباكالوريا التجريبي -------------------------ماي 2019

Ⅲ - للكشف عن الطبيعة الكيميائية لز لال البيض انجز عليه التجربتين التاليتين زلال البيض + CuSO₄ + وسط قاعدي)
 نولال البيض + HNO₃ + راسب اصفر

1- فسر النتيجتين السابقتين ثم استنتج طبيعة زلال البيض

2- اليك مقطع من زلال البيض: Asn-Arg-Thr . اكتب صيغة البيبتيد عند PH=1

3- اعط تمثيل فيشر D للحمض الاميني Thr

4- اكتب تفاعل نزع مجموعة الكربوكسيل للحمض Asn

5 - وضع مزيج من الاحماض Arg و Thr في جهاز الهجرة الكهربائية عند PH=10.75 . وضح مواقع هجرة الاحماض على شريط الهجرة علما أن:

PKa _R	PKa ₂	PKa ₁	الجـــذر R	الحمض الأميني
12,48	9,04	2,17	$H_2N-C-NH-(CH_2)$	Arg
////////	9,10	2,09	Н ₃ С−СН— ОН	Thr
////////	8,08	2,02	O=C—CH ₂ — NH ₂	Asn

6- اكتب الصيغة الايونية للحمضين عند PH=10.75

التمرين الثالث

الى $^\circ C$ عبر شكلين (يعتبر غاز مثالي) من $^\circ C$ الى $^\circ C$ عبر شكلين -I

a- تحول عند حجم ثابت.

b- تحول عند ضغط ثابت.

 ${f W}$ الحالتين كمية الحرارة ${f Q}$ و العمل ${f Q}$

2- استنتج الطاقة الداخلية لكلا الحالتين

Cv=0.18cal/g.k

Cp=0.25cal/g.k

R=2cal/mol.k

يعظى:

II- عند تعرض الغليسرول الناتج عن تفكك المادة الدهنية الى درجة حرارة عالية (أي عند القلي) ينتج عنه مادة سامة وهي الاكرولين (propénal) حسب المعادلة التالية :

$$_{1}^{\text{H}_{2}\text{C}}$$
 — OH $_{1}^{\text{C}}$ — OH $_{1}^{\text{C}}$ — OH $_{2}^{\text{C}}$ — OH $_{2}^{\text{C}}$ — OH $_{2}^{\text{C}}$ — OH

1- اكتب معادلة احتراق الاكرولين السائل

 ΔH_{comb} الاكرولين السائل علما ان ΔH_{comb} الاكرولين السائل علما انطالبي تشكل الاكرولين السائل علما انطالبي تشكل الاكرولين السائل علما انطالبي السائل و

$$C_{(s)}+O_{2(g)}\longrightarrow CO_{2(g)}\Delta H_1=-393KJ/mol$$

$$H_{2(g)} + \frac{1}{2}O_{2(g)} \longrightarrow H_2O_{(\ell)}\Delta H_2 = -286KJ/mol$$

 $\Delta H_{Sub} = +717 KJ/mo$ ان السائل علما الكرولين السائل ΔH_{vap} الكرولين السائل علما ان

المركب	Н-Н	O=O	С-Н	C=O	C=C	С-С
E KJ/mol	436	498	413	719.5	615	348

3as.ency-ed/ucation.com

إمتحان الباكالوريا التجريبي-------ماي 2019

الموضوع الثاني

التمرين الأول

I- لتحضير بوليمير ذو اهمية صناعية نجرى سلسلة تفاعلات التالية:

1) A +
$$O_3$$
 $\xrightarrow{H_2O}$ B + C_2H_4O + H_2O_2

2) B +
$$H_2$$
 \longrightarrow C

3) C
$$\frac{\text{H}_2\text{SO}_4}{170^{\circ}\text{C}} \rightarrow \text{D} + \text{H}_2\text{O}$$

6) F +
$$H_3C$$
- C - H \longrightarrow G + MgBr(OH)

7) G
$$Al_2O_3 \rightarrow H + H_2O CH_3$$

8) nH $CH_3 CH_3$

1- أعد كتابة المعادلات مبينا الصيغ الكيميائية للمركبات من ${f A}$ إلى ${f H}$ علما أن ${f B}$ لا يرجع محلول فهلنغ.

- 2- ما نوع التفاعل الأخير ؟
- 3- أكتب مقطع يتكون من 3 وحدات بنائية مع الحد الأيمن للبوليمير.
- K و أكسدته بوجود $KMnO_4$ في وسط حمضي تعطى المركب I و أكسدته بوجود I
 - أكتب معادلات التفاعل الحادثة.

يحضير المركب K مخبريا بتفاعل $3 \, \text{ml}$ من $3 \, \text{ml}$ في وسط قاعدي وفق المعادلة التالية:

$$3C_6H_5-CH_2OH_{(aq)}+4MnO_{4(aq)} \longrightarrow 3C_6H_5-COO_{(aq)}+4MnO_{2(s)}+OH^-+4H_2O$$

- 5- أحسب عدد مو لات كل من كحول البنزيلي و KMnO4.
- 66% هو R (الكتلة التجريبية النقية) إذا علمت أن المردود R هو 66%
 - 7- لماذا يستعمل الترشيح تحت الفراغ اثناء التحضير؟

ر بعظى ρ_{alcool}=1.04g/ml K=39g/mol Mn : 55g/mol H : 1g/mol C=12g/mol O=16g/mol

التمرين الثاني

I- لمعرفة عدد الروابط المضاعفة الموجودة في ثلاثي غليسيريد متجانس كتلته المولية 800g/mol أخذنا gg من المادة الدهنية و فاعلناها مع 9g من اليود المتبقي هو 1,38g.

- 1- عين عدد الروابط المضاعفة.
- 2- أحسب قرينة اليود و قرينة الأستر.
- 3- أوجد الصيغة العامة للحمض الدهني.

يعطى: Tilly and C=12g/mol I: 127g/mol O=16g/mol I: 127g/mol O=16g/mol L: 127g/mol O=16g/mol I: 127g/mol O=16g/mol O

II- لديك ثلاثي الببتيد A-B-C حيث أن:

ممض اميني اميدي و f B حمض اميني فعال ضوئيا f A

1- اكتب صيغة الببتيد ثم اذكر اسمه 2- امار - منة البتد مند 12-DII

2- اعط صيغة الببتيد عند PH=12

3- اكتب الصيغ الايونية للسيستين Cys من PH=12 الى PH=12 ثم احسب PHi

4- اكمل التفاعلات التالية:

$$Gly+HNO_{2} \longrightarrow \cdots$$

$$Cys+Gly+Cys \longrightarrow \cdots$$

$$Gln+C_{2}H_{5}-OH \xrightarrow{H_{2}SO_{4}} \cdots$$

يعطي:

PKa _R	PKa ₂	PKa ₁	الجـــذر R	الحمض الأميني
/////	/////	//////	$O = C - \left(CH_2\right)_2$	غلوتامين
8.18	10,28	1,96	HS-CH ₂ -	سيستين
////////	//////	/////	H-	غليسين

التمرين الثالث

تحترق 4g من غاز الميثان داخل مسعر يحتوي على 3.55Kg من الماء فترتفع درجة الحرارته بمقدار 14,98°C.

1- أوجد كمية الحرارة الناتجة عن تفاعل الإحتراق. علما ان السعة الحرارية للمسعر مهملة و Ceau=4.185J/g.K

- 2- إستنتج أنطالبي الإحتراق.
- 3- أكتب معادلة إحتراق غاز الميثان.

 $\Delta H_f H_2 O_{(\ell)} = -286 \; \mathrm{KJ/mol}$ و $\Delta H_f CO_{2(\mathrm{g})} = -393 \; \mathrm{KJ/mol}$ علمان ($\Delta H_f CH_4$). حسب أنطالبي تشكل غاز الميثان ($\Delta H_f CH_4$).

لديك التفاعل التالي:

$$CH_{4(g)}+4F_{2(g)} \longrightarrow CF_{4(g)}+4HF_{(g)}$$

 $\Delta Hr = -1689.2 \text{ KJ/mol}$

 $\Delta H_f HF = -271 \text{ KJ/mol}$

5- أحسب ΔH_f لـ CF₄ علما أن:

 $\Delta H_{dis}F-F = 158KJ/mol$

 $\Delta H_{\text{sub}}C = 717 \text{ KJ/mol}$

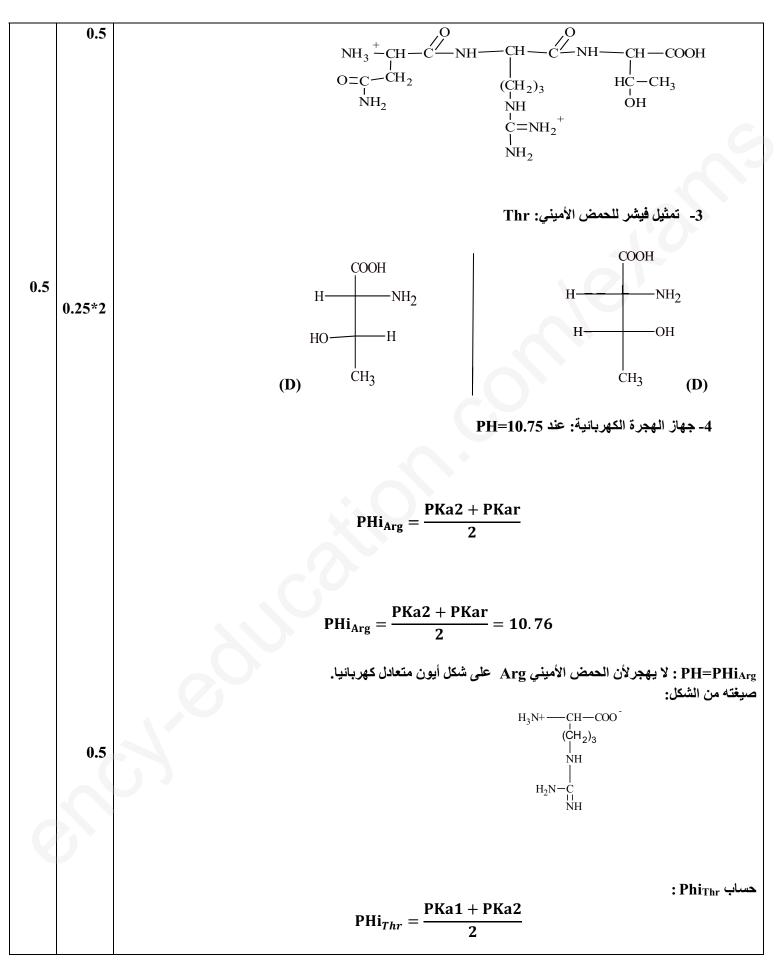
6- أحسب طاقة الرابطة C-F علما أن:

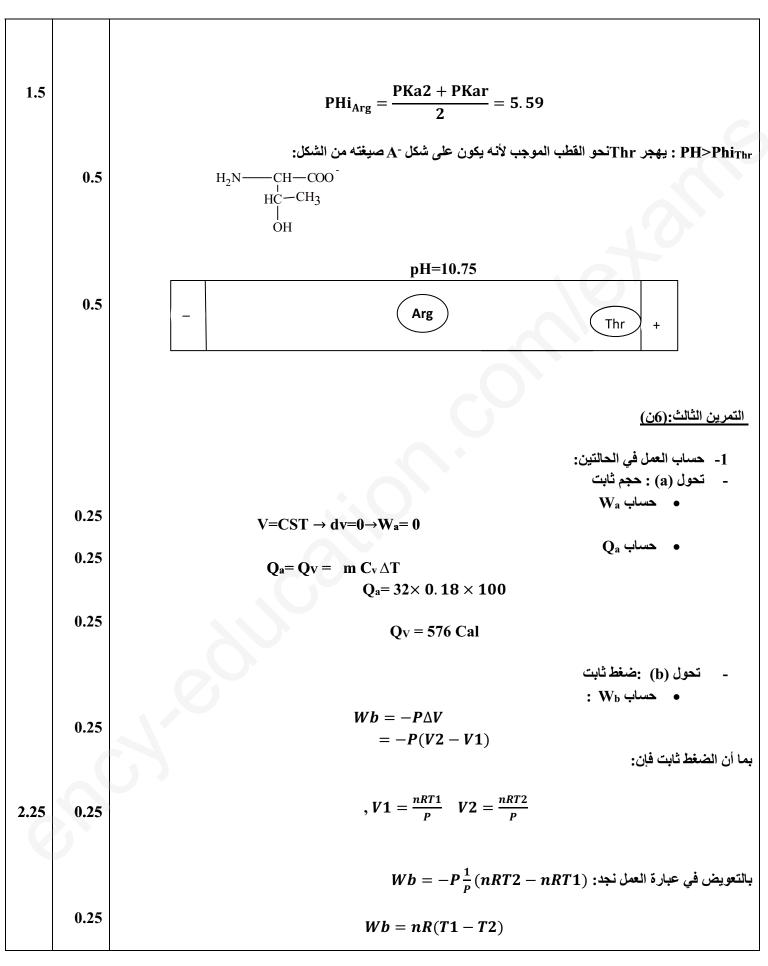
لا يمكننا أن نعلم شيئا لأحد كل ما بوسعنـــا هو أن نساعده للبحث عن الجواب بداخله

ملاحظة:

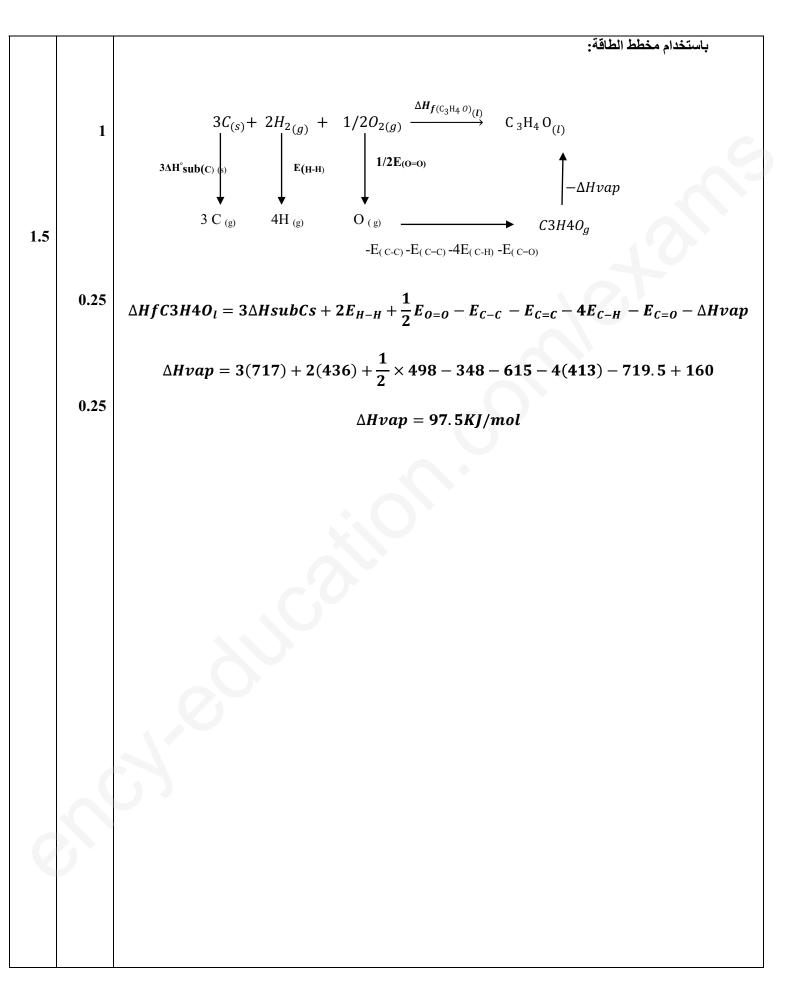
أستاذتكم توصيكم بالقراءة الجيلدة للمعطيات مع

التركيـــز في الحل


الإجابة النموذجية وسلم التنقيط لموضوع امتحان البكالوريا التجريبي دورة ماي 2019 الشعبة: تقني رياضي اختبار مادة التكنولوجيا (هندسة الطرائق) المدة: 04 ســـا


ة ا	العلام	عناصر الإجابة (الموضوع الأول)
المجموع	المجزأة	(65) 25 7 3
	0 .25 0.25	(A) التمرين الأول: (A) :
1	0.25	$C_{n}H_{2n+1}Cl$ من الشكل: R - Cl : A) صيغة المركب R -
	0.25	CH3-Cl: ومنه صيغة المركب (A): من الشكل
	0.25*5	F المركبات من الم
	0.25	(E) (E)
	0.25	ب- نوع التفاعل(2): نترجة نوع الوسيط: H2SO4 ج- حساب كتلة الحمض الإبتدائية E در الذر ورزة بالكورا لما روا فان مدود تفاعل الأرت ترسيلور 2700
	0.25	بما أن صنف الكحول أولي فإن مردود تفاعل الأسترة يساوي %67
3	0.25	$R=rac{n_{ ext{hull, park}}}{n_{ ext{pirk}}}$ ندينا
	0.25	$m_{rac{m_{init}}{R}} = rac{n_{mix}}{R} imes 100$ $m_{mix} = rac{m_F}{R} imes 100 imes M_E$

	0.25		M_E	= 137g/mol			
			0	. 12 × 100 × :	137		
			$m_E = -$	67			
							C
	0.25		m	$_E=24.53g$			
					اولى:	, التفاعل من الرتبة الا	II- 1- إثبات أن
	0.7					$ \ln\frac{[F]_0}{[F]} = \mathbf{f}(\mathbf{t}) $	رسم المنحنى: (
	0.5						
2	1	t (S)	0	200	400	600	800
2	1	$\ln \frac{[F]_0}{[F]}$	0	0.35	0.75	1.08	1.42
		[*]					
	0.7	على من الدتنة الأما	ر در ، م م نه التفاء	من المددأ مدا 4 مد	ا خط مستقدم دمد	n ^[F] –f(t) -ällsl	المنحن السائيا
	0.5	عل من الرتبة الأولى		ر من المجار المجار	1. — <u>.</u>	ـــــــــــــــــــــــــــــــــــــ	، ــــــــــــــــــــــــــــــــــــ
	0.25	1	$K = \tan \alpha =$	$=\frac{\Delta \left(\ln[F]_0/[F]_0\right)}{\Delta t}$	<u>'])</u>		
				$\frac{0.75 - 0.35}{400 - 200}$			
0.5				400 – 200			
	0.25		K =	$2 \times 10^{-3} S^{-1}$	_		
				$\frac{[A]_0}{2}=[A]$ ون	t=t _{1/2} عند t _{-t1/2} يک	من نصف التفاعل:2/	3- حساب ز
	0.25			$=\frac{ln2}{k}=345.5$	7		
0.5	0.25		$t_{1/2} =$	$=\frac{1}{k}=345$ S	•	(i)	التمرين الثاني: (7
							-I
			الشكل			يغة الحمض الدهني (نيل الطوبولوجي لدين	
	0.25	CH ₃ _(0		H_(CH ₂) ₇ _CO		•	
				رید:	تعطي ثلاثي الغلسي	لحمض الدهني (A) نا	هدرجة ا
1	0.25						


$$\textbf{0.25} \qquad \begin{array}{c} \text{CH}_3 = (\text{CH}_2)_5 = \text{CH}_2 = (\text{CH}_2)_7 = \text{COOH}_{\frac{1}{2}} & \text{II}_2 & \text{Ni} & \text{CH}_3 = (\text{CH}_2)_5 = \text{CH}_2 = (\text{CH}_2)_7 = \text{COOH}_3 \\ \text{e.i.s.} & \text{o.25} & \text{CH}_3 = (\text{CH}_2)_{14} = \text{CH}_3 \\ \text{HC} = \text{O} = \text{C}^{\frac{1}{2}} & \text{CH}_3 = \text{CH}_3 \\ \text{HC} = \text{O} = \text{C}^{\frac{1}{2}} & \text{CH}_3 = \text{CH}_3 \\ \text{HC} = \text{CH}_3 = \text{CH}_3 = \text{CH}_3 \\ \text{HC} = \text{CH}_3 = \text{CH}_3 = \text{CH}_3 \\ \text{HC} = \text{CH}_3 = \text{CH}_3 = \text{CH}_3 \\ \text{CH}_2)_{14} = \text{CH}_3 \\ \text{CH}_3 = \text{CH}_3 = \text{CH}_3 = \text{CH}_3 \\ \text{CH}_2)_{14} = \text{CH}_3 \\ \text{CH}_3 = \text{CH}_3 = \text{CH}_3 = \text{CH}_3 \\ \text{CH}_2)_{14} = \text$$

		T _100 (
	0.25	- استناج Is استناع Is استناع الله الله الله الله الله الله الله ال
	0.25	$I_{\rm S} = 208.4 + 220.4 = 428.8$ ومنه: $I_{\rm S} = I_{\rm e} + I_{\rm a}$ لدينا:
	0.25	م مرا تا دو تا
		3- كتابة معادلة الأكسدة:
		KMnO .
0.25	0.25	
0.25	0.25	
		 4- اذا تعرضت المادة الدهنية للأكسدة تصبح قرينة الحموضة تساوي:
	0.25	$\mathbf{I_{a}} = \mathbf{I_{a1}} + \mathbf{I_{a2}}$
	0.23	
		حساب I _{a1} :لثنائي الوظيفة الكربوكسيلية
		4.403.2.44
		$M_{(AG)}$ \Rightarrow $Ia1 = \frac{1 \times 10^3 \times 2 \times M_{KOH}}{M_{(TG)}}$
		$1 g \longrightarrow I_{a1} *10^{-3}$
	0.25	1 9
		$M_{A1} = 188 g/mo l$
		$Ia1 = \frac{1 \times 10^3 \times 2 \times 56}{188} = 595.74$
	0.25	$1a1 = \frac{188}{188} = 595.74$
		حساب I_{a2} : لأحادي الوظيفة الكربوكسيلية
		$\mathbf{M}_{\mathbf{A2}} = 130 \mathbf{g/mol}$
		$\mathbf{Ia2} = \frac{1 \times 10^3 \times 56}{130} = 430.76$
1.25	0.25	130
		$I_a = 595.74 + 430.76$
		$I_a = 393.744430.70$ $I_a = 1026.5$
	0.25	14 1020.0
	0.25	- الاستنتاج: نستنتج أنه كلما زاد عدد الأحماض الدهنية الحرة ازدادت قرينة الحموضة ${f I}_a$
	0.25	
		-II
		1- تفسير النتيجتين:
0.75	0.25	 – راسب أزرق بنفسجي لوجود روابط بيبتيدية
0.75	0.25	 ـ راسب أصفر لوجود أحماض أمنية عطرية
	0.25	 نستنتج أن طبيعة زلال البيض عبارة عن بروتين
	U.43	-2
		- صيغة البيبتيد عند PH=1
0.5		

	$Wb = 1 \times 2 \times (-20 - 80)$
0.25	$Wb = -200 \ Cal$
0.25	$Qb=Qp=m\ Cp\ \Delta T$: $Q_{ m b}$ جساب
	$0.25\times(80+20)Qv=32\times$
0.25	Qp = 800Cal
	2- استنتاج الطاقة الداخلية لكلا الحالتين:
0.25	$\Delta Ua = Qv = 576Cal$
0.25	$\Delta U \boldsymbol{b} = W \boldsymbol{b} + \boldsymbol{Q} \boldsymbol{p} \ \Delta U \boldsymbol{b} = -200 + 800$
0.25	$\Delta Ub = 600Cal$ کتابة معادلة الإحتراق:
0.25	$C3H4O_1 + \frac{7}{2}O2_g \rightarrow 3CO2_g + 2H2O_l$
	∆ C3H4O حساب -2
0.25	حسب قانون Hess لدينا
0.25	$\Delta H comb = \sum \Delta H f_{produits} - \Delta H f_{réactifs}$ $\Delta H comb = 3\Delta H f co2_g + 2\Delta H f H 2O_l - \Delta H f C 3 H 4O_l$
	$\Delta HfC3H4O_{l} = 3\Delta Hfco2_{g} + 2\Delta HfH2O_{l} - \Delta Hcomb$
	$\Delta Hfco2_g$, $\Delta HfH2O_l$ أولا: نحسب
	ATICA-9 ATIA 909 MI/ I to the Middle
0.23	$\Delta Hfco2_g = \Delta H1 = -393 KJ/mol$ من المعادلات نجد $\Delta HfH2Ol = \Delta H2 = -286 KJ/mol$
0.25	$\Delta HfC3H4O_l = 3 \times (-393) + 2(-286) - (-1591)$:
	$\Delta HfC3H4O_l = -160$ KJ/mol کارولین: $\Delta Hvap$ ناگکرولین:
	0.25 0.25 0.25 0.25

