الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

ثانوية الشهيد غضبان الطيب

الشعبة: تقني رياضي المدة: 02 ساعتين و مديرية التربية لولاية باتنة

امتحان الثلاثي الأول

الشمرة

03 دیسمبر 2019

المستوى: الثالثة ثانوي

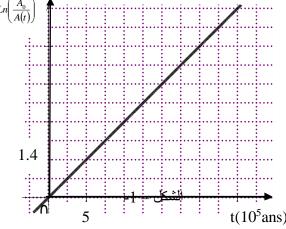
مادة: العلوم الفيزيائية

نصف

الجزء الأول (14نقطة)

التمرين الأول (04 نقاط):

تحتوي الترسبات البحرية على الثوريوم Th_{90}^{230} و اليورانيوم U_{90}^{234} بنسب مختلفة و ذلك حسب أعمارها بينتج الثوريوم U_{90}^{230} المتواجد في هذه الترسبات عن النشاط الإشعاعي التلقائي لليورانيوم U_{90}^{234} خلال الزمن يهدف هذا التمرين إلى دراسة النشاط الإشعاعي لليورانيوم U_{90}^{234} .

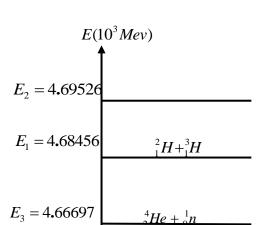

- ^{230}Th أعط تركيب نواة الثوريوم 1.
- أكتب معادلة تفكك نواة اليورانيوم U_{22}^{234} إلى نواة الثوريوم U_{20}^{230} و تعرف على نوع التفكك الحادث مع تعريفه.
 - $E_{I\left(\frac{234}{92}U\right)}=1.73.10^{3} Mev$ بين أن طاقة الربط للنواة اليور انيوم .3
- 4. نعتبر عينة من ترسب بحري تكوّن عند اللحظة t=0, تحتوي العينة على N_0 من أنوية اليور انيوم و لا تحتوي على أنوية الثوريوم .

 $Ln\left(rac{A_0}{A(t)}
ight)$ يمثل المنحنى الشكل-1-تغير ات-

- . مدد قيمة ثابت النشاط الإشعاعي χ لليورانيوم . 1.4
- $\frac{A_0}{A(t)} = \sqrt{2}$ أن (عمر العينة) عند اللحظة عند اللحظة .2.4

ans حدد قيمة t_1 عمر العينة بالوحدة

 $m_p = 1.00728$; $m_n = 1.00866$ u ; $m\binom{234}{92}U$ = 234.0409 u ; $1u = 931.5 Mev/c^2$


التمرين الثاني (04 نقاط):

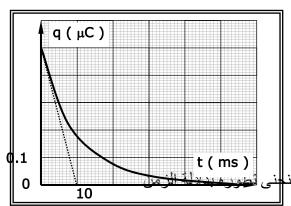
لدراسة تفاعلات الإندماج و ايجابياته, يعتبر خليط الدوتوريوم H_1^2 و التريتيوم H_1^3 وقودا في المفاعلات النووية المستقبلية.

I- يؤدي تفاعل اندماج الدوتيوريوم H_1^2 و التريتيوم H_1^3 ا إلى تكوّن الهيليوم و نوترون.

- 1. أكتب معادلة تفاعل لهذا الإندماج
- 2. أنقل المخطط الطاقوي الشكل-2- و أكمله
- Mev بإستعمال مخطط الطاقة الممثل في الشكل-2- أحسب ب E_{l} أ. طاقة الربط E_{l} لنواة الهيليوم
 - ب. الطاقة المحررة عن تفاعل الإندماج
- ج. استنتج الطاقة المحررة عن إندماج واحد مول من الدوتيريوم

الصفحة 1 من 3

وواحد مول من التريتيوم 4. أذكر إجابيات هذا التفاعل في حالة تم تحقيقه مستقبل معطى $N_A=6,023.10^{23}\,mol^{-1}$ يعطى :


الشكل-2-

التمرين الثالث (06 نقاط)

نستعمل في حياتنا اليومية مجموعة من الأجهزة الكهربائية والإلكترونية تحتوي داراتها على نواقل أومية و مكثفات . لتحديد سعة مكثفة تم شحنها تحت توتر ثابت (E=5V) .ثم أعيد تفريغها في ناقل أومي مقاومته $R=10^5\Omega$ و ذلك عند اللحظة t=0 . يمثل البيان التالى تطورات شحنة المكثفة أثناء تفريغها .

- ل عادلة التفاضلية الدارة بدلالة q(t) خلال التفريغ . q(t)
- t=0 عند عند والمكثفة عند Q_0 حيث Q_0 حيث عند عند و Q_0
 - ن المماس للبيان عند المبدأ يقطع محور الأزمنة $(t=\tau)$ عند نقطة توافق $(t=\tau)$
 - 4) ـ عين بيانيا ثابت الزمن τ , وما هو مدلوله الفيزيائي .
 - \cdot \cdot \cdot أحسب سعة المكثفة \cdot
 - $t=5\tau$ و و عند اللحظة و و و t=5 و المكثفة عند اللحظة و

7) ـ إستنتج العبارة اللحظية لشدة التيار $i\left(t
ight)$ المار في الدارة ومثل كيفيامن

الجزء الثاني (06 نقاط)

التمرين التجريبي (06 نقاط): عرف منتوج مطهر فعال ضد العدوى البكتيرية و الفيروسية يحتوي على عرف ماء جافيل منذ أكثر من قرنين و هو منتوج مطهر فعال ضد العدوى البكتيرية و الفيروسية يحتوي على شوارد الهيبوكلوريت ClO^- و شوارد ClO^- و أفراد أخرى.

تضفي شاردة الهيبوكلوريت ClO^- على ماء جافيل الصفة المؤكسدة. يحدث في الضوء أن الشوارد ClO^- تؤكسد بشكل بطيء جزيئات الماء $H_{2}O$ بالمعادلة:

$$2ClO^{-}_{aq} = O_{2(g)} + 2Cl^{-}_{(aq)}$$

نقترح في هذا التمرين دراسة حركية تفكك ماء الجافيل بوجود شوارد Co^{2+} حيث يصبح التفاعل اسرع نقيس عند درجة حرارة V_{o_2} عند درجة حرارة V_{o_2} المتشكل كل لحظة V_{o_2} فنتحصل على جدول القياسات التالي:

t(s)	0	60	120	180	240	300	360	420	450	480
$V_{O_2}(mL)$	0	79	148	203	248	273	298	312	316	316
$X(moL)10^{-3}$										

- 1. أعط البرتوكول التجريبي لمتابعة هذا التحول الكيميائي.
- 2. أكتب المعادلات النصفية الإلكترونية للأكسدة و الإرجاع تعطى : الثنائيتين الداخلتين في التفاعل: $o_2/H_2O,Clo^-/Cl^-$
 - V_{o_1} أنجز جدول تقدم التفاعل أوجد العلاقة بين تقدم التفاعل X و حجم غاز المنطلق X

- X = f(t) القياسات و ارسم البيان (4.
- $[ClO^-]_0$ عين التقدم الأعظمي للتفاعل $X_{
 m max}$ و استنتج التركيز المولي الإبتدائي لشوار د الهيبوكلوريت $X_{
 m max}$
 - 6. عرف زمن نصف التفاعل $t_{1/2}$ و أحسب قيمته.
 - $v_{V_{ClO^-}}(t) = \frac{2}{V_T} \cdot \frac{dX}{dt}$: بين أن السرعة الحجمية لاختفاء شوارد الهيبوكلوريت ClO^- تعطى بالعلاقة: 7.

ثم أحسبها في اللحظات: t = 0; $t = t_{1/2}$; $t = 5t_{1/2}$.

 Co^{2+} عدم وجود شوارد 8.

-أرسم كيفيا شكل المنحنى على البيان السابق مع التبرير.

يعطى:

V=0.11L حجم ماء الجافيل المستعمل; $V_{M}=24L/moL$

بالتوفيق للجميع