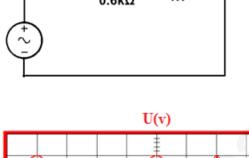

2019/2018	ختبار الثلاثي الثاني في مادة التكنولوجيا	
المدة: ساعتين	(المندسة الكيسائية)	

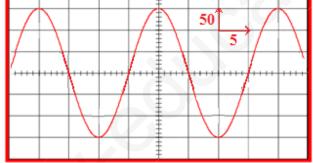
ثانوية العقيد لطفى

(الهندسة الكهربائية)

قسم سنة الثانية تقنى رياضي


التمرين الأول: ليكن التركيب التالي لاستقطاب المقحل:

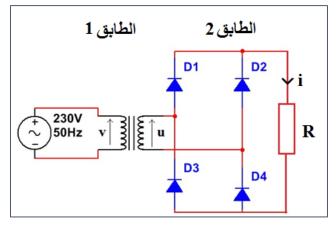
$$V_{CC}$$
=20V , V_{BE} =0.5 V , V_{CE} =1/2 V_{CC} , β =100 R_2 =1 $K\Omega$, I_B =50 μ A


- 1- اعد رسم التركيب ومثل اتجاه التيارات والتوترات.
- 2- اكتب معادلة مستقيم الحمولة السكوني (مستقيم الحمولة)
 - 3- احسب المقاومة Rc والمقاومة R1.

التمرين الثاني:

نقوم بتركيب على التسلسل مقاومة $R_1=0.6$ ووشيعة $L_1=1$ نطبق بين طرفي الدارة توتر متناوب الملاحظ على شاشة جهاز راسم الاهتزازات المهبطى.

- 1- من خلال التوتر المشاهد اعطى قيمة الدور T والتواتر F والنبض Φ والقيمة العظمى والفعالة للتو تر .
- - 2- احسب ممانعة الدارة RL.
 - 3- احسب فرق الطور φ لممانعة الدارة.
 - 4- اعطى العبارة الرياضية للتوتر.
- 5- أنشئ تمثيل فرينل لممانعة الدارة RL الموافقة ل قيمة ص.



التوتر الملاحظ على جهاز راسم الاهتزازات المهبطى

6- احسب في هذه الحالة شدة التيار المار في الدارة. ثم التوتر بين طرفي كل من المقاومة والوشيعة.

t(ms)

اقلب الورقة

التمرين الثالث:

ليكن التركيب الكهربائي التالية:

الثنائيات مثالية في التركيب

1- ما هو اسم ودور كل طابق؟

2- من اجل الحصول على تغذية مستقرة ماهي العمليات التي بجب اضافتها؟

الطابق 1: الاستطاعة الظاهرية الاسمية للطابق1

هی S_n=200VA

3- احسب قيمة التوتر U إذا علمت ان نسبة التحويل m=0,11.

4- احسب التيار في الثانوي I₂

الطابق 2:

5- ماهي حالة الثنائيات لما:

U>0 -1

U<0 -2

6- احسب القيمة المتوسطة للتيار المار في المقاومة R.

7- اختر من بين الثنائيات التالية ايهما صالح لإنجاز هذا التركيب مع التعليل.

المرجع	1N1200C	1N4937	1BH62	1N5059
VIAK التوتر العكسي	50V	60V	24V	75V

التمرين الرابع:

منشأة تحتوي على 5 مصابيح كل واحد منها يحمل الخصائص التالية : Ω ، Ω ، Ω 0 و محركين

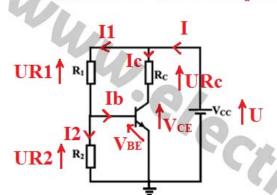
 $\cos \phi_1 = 0.55$ الأول استطاعته 2.5 kw ومعامل استطاعته

 $\cos\phi_1$ =0,83 ومعامل استطاعته 1,5kw الثاني

تغذى المنشأة بتيار متناوب جيبي تردده 50hz وتوتره 220V

المطلوب:

1. احسب مختلف الاستطاعات للمنشأة.


2. احسب شدة التيار الكلية التي تسري في المنشأة.

3. احسب معامل الاستطاعة الاجمالي للمنشأة.

www.electropro.net

بالتوفيق

تصحيح الاختبار الثلاثي الثاني سنة الثانية هندسة كهربائية

التمرين الاول:

1- تمثيل اتجاه التيارات والتوترات

2- معادلة مستقيم الحمولة السكوني

Vcc-URC-VCE=0 Vcc-Rc.Ic-VCE=0 Ic=E2/Rc - VcE/Rc

3- حساب المقاومة Rc

اذا

Vcc-Urc-Vce=0 Urc=Vcc-Vce Urc=20-20/2 Urc=10V

ادینا Ic=B.Ib Ic=100 . 50.10⁻⁶ Ic=0.005A

Rc.Ic=10 Rc=10/0.005 Rc=2 kilo ohom

التمرين الثاني:

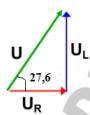
$$Z = \sqrt{R^2 + (L\omega)^2}$$
 حمانعة الدارة

$$Z = \sqrt{(600)^2 + (1.314)^2}$$

$$Z = 677,19$$
 ohm

$$\tan \varphi = \frac{L\omega}{R}$$

$$\tan \varphi = (1.314)/_{600}$$


$$\tan \varphi = \mathbf{0.523}$$

$$\varphi$$
 = 27,62 $^{\circ}$

4-العبارة الرياضية للتوتر

$U(t)=150(\sin 314t+27,62)$

5-تمثيل فرينل

6-شدة التيار المار في الدارة

U=Z.I I=U/Z I= 212/677,19 I=0.313A

التوتر بين طرفي المقاومة

UR1=R1.I UR1=600.0,313 UR1=187,8V

UL1=ZL1.I UL1=(L1.w).I UL1=314.0,313 UL1=98,282V التوتر بين طرفي الوشيعة

التصحيح من موقع

www.electropro.net

للأستاذ بلمادي محمد

التمرين الثالث:

1- اسم ودور كل طابق

الطابق1: محول احادي الطور دوره: تخفيض التوتر

الطابق 2: مقوم ثنائي النوبة بجسر غريتس دوره: تحويل اشارة ثنائية الاتجاه

الى اشارة احادية الاتجاه

2- من اجل الحصول على تغذية مستقرة نظيف مكثفة الترشيح ومنظم

3-حساب قيمة التوتر U

m=U/V

U=m.V

U=0,11.230

U=25,3V

4-حساب التيار في الثانوي I2

Sn=U.I2

I2=Sn/U

I2=200/25,3

I2=7,90A

5- حالة الثنائبات

-D1 U>01 و D4 ممرران D2 و D3 محصوران

-D1 U<02 و D3 محصوران D3 و D3 ممرران

6-حساب القيمة المتوسطة للتيار المارفي المقاومة R

$$U_{RMOY} = \frac{2.U_{RMAX}}{\pi}$$

$$U_{RMOY} = 2.\sqrt{2} \cdot 25,3/3,14$$

$$U_{\rm RMOY} = \mathbf{22.79V}$$

7- الثنائيات الصالحة للتركيب هي الثنائيات ذات المرجع 1N5059

لانها تتحمل توتر عكسي يساوي 75 V

وفي التركيب يجب ان نختار ثنائيات تتحمل ضعف التوتر الاعظمي

 $\sqrt{2}$. 25,3 . 2 = 71,55V

التمرين الرابع:

1- حساب مختلف الاستطاعات

P=U.I=U.(U/R)=220.(220/440) استطاعة الفعالة لمصباح P= 110W

الاستطاعة الارتكاسية	الاستطاعة الفعالة	العنصر
0	110 . 5 =550W	5 مصابیح
tan(56.83).2500=3796,2VAR	2500W	المحرك 1
tan(33,90).1500=1008VAR	1500W	المحرك 2
4804,2VAR	4550W	المجموع

2- شدة التيار الكلية

$$S = \sqrt{P^2 + Q^2}$$

 $S = 6616,8AV$
 $S = U.I$
 $I = S/U$
 $I = 6616,8/220$
 $I = 30A$

3- معامل الاستطاعة الاجمالي

P_T=S.cos
$$\varphi$$

$$\cos \varphi = \frac{P_T}{S}$$

$$\cos \varphi = 0.68$$

التصحيح من موقع

www.electropro.net

للأستاذ بلمادي محمد