المستوى: 3 لح تج – المحة: 2 سا

المادة : رياضيات

## اختبار الثلاثي الأول

## (88 نقاط) التمرين الأول:

عين الإجابة الصحيحة من بين الإجابات المقترحة مع التبرير (أي إجابة دون تبرير لا تؤخذ بعين الاعتبار)

| سالب تماما | موجب تماما | معدوم        |
|------------|------------|--------------|
| 2          | 1          | 0            |
| 2          | 1          | 0            |
| [0; +∞[    | Ø          | $\mathbb{R}$ |

: العدد 
$$\frac{1}{2}Ln(125) + 2Ln(\frac{1}{5}) + Ln\sqrt{5}$$
 هو عدد (1

: هو 
$$e^{3x} - x - 1 = 0$$
 هو عدد حلول المعادلة (2

: عدد حلول المعادلة : 
$$(Lnx)^2 = Ln(x^2)$$
 هو

: هي 
$$e^x - e^{-x} \ge 0$$
 علول المتراجحة (4

: الدالة 
$$f(x)=3\sin\left(2x-\frac{\pi}{2}\right)$$
 : بالدالة المعرفة على  $f(x)=3\sin\left(2x-\frac{\pi}{2}\right)$  الدالة على المعرفة على الدالة على الدالة على الدالة المعرفة على الدالة الدال

| لبست ز و جبة و لبست فر دبة | فرينة | 3     |
|----------------------------|-------|-------|
| ليست روجيه وليست فرديه     | قردیه | روجيه |

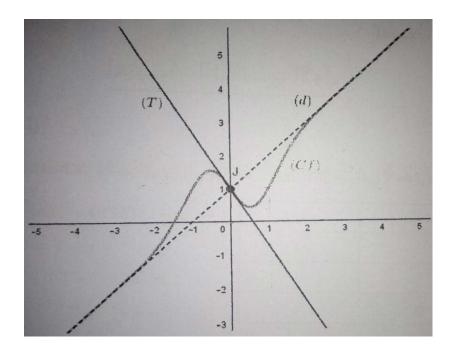
: الشكل فواصلها من الشكل فواصلها من الشكل فواصلها من الشكل إلى المعرفة على  $g(x) = 3\cos\left(2x - \frac{\pi}{2}\right)$ 

| $\begin{array}{c c} \pi & \pi \\ x - \frac{\pi}{2} + k \frac{\pi}{2} / k \in \mathbb{Z} \end{array}$ | $x = \frac{\pi}{1 + k\pi/k} \in \mathbb{Z}$          | $x = \frac{\pi}{2} + 2k\pi/k \in \mathbb{Z}$          |
|------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|
| $x = \frac{1}{2} + \kappa \frac{1}{2} / \kappa \in \mathbb{Z}$                                       | $x - \frac{1}{2} + \kappa n / \kappa \in \mathbb{Z}$ | $x - \frac{1}{2} + 2\kappa n / \kappa \in \mathbb{Z}$ |

: الدالة h المعرفة على  $\mathbb{R} = \frac{mx^2}{r^2-1}$  بالدالة h الدالة  $m \in \mathbb{R}^*$  تقبل قيمة حدية محلية وحيدة من أجل (7

| $m \in \mathbb{R}_+^*$ | $m \in \mathbb{R}^*$ | $m \in \mathbb{R}^*$ |
|------------------------|----------------------|----------------------|

: و y(Ln2)=1 هو الذي يحقق y=y'-1 هو الخاص للمعادلة التفاضلية و y(Ln2)=1


| $x \mapsto e^x - 1$ | $x\mapsto e^{(1-x)}-1$ | $x \mapsto e^{\frac{1}{2}(x+1)} + 1$ |
|---------------------|------------------------|--------------------------------------|
|                     |                        |                                      |

## (12 نقطة) التمرين الثاني :

.  $f(x) = mx + p + (ax + b)e^{-x^2}$ : هي ، عبارتها هي للشتقاق على المعرفة والقابلة للاشتقاق على المعلم المتعامد والمتجانس ( $(c, \vec{\imath}; \vec{\jmath})$ ) منحناها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس ( $(c, \vec{\imath}; \vec{\jmath})$ ) منحناها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس ( $(c, \vec{\imath}; \vec{\jmath})$ ) منحناها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس ( $(c, \vec{\imath}; \vec{\jmath})$ ) منحناها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس ( $(c, \vec{\imath}; \vec{\imath})$ ) منحناها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس ( $(c, \vec{\imath}; \vec{\imath})$ ) منحناها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس ( $(c, \vec{\imath}; \vec{\imath})$ ) منحناها البياني في المستوي المنسوب المعلم المتعامد والمتجانس ( $(c, \vec{\imath}; \vec{\imath})$ ) منحناها البياني في المستوي المنسوب المعلم المتعامد والمتجانس ( $(c, \vec{\imath}; \vec{\imath})$ ) منحناها البياني في المستوي المنسوب المعلم المتعامد والمتجانس ( $(c, \vec{\imath}; \vec{\imath})$ ) منحناها البياني في المستوي المنسوب المعلم المتعامد والمتعامد والمتجانس ( $(c, \vec{\imath}; \vec{\imath})$ ) منحناها البياني في المستوي المنسوب المعلم المتعامد والمتعامد والمتعا

 $-\infty$  و  $+\infty$  المنحنى ( $\mathcal{C}_f$ ) يقبل مستقيما مقاربا ( $\mathcal{C}_f$ ) بجوار  $\mathscr{I}$ 

. (T): y = (1-e)x+1 هو المماس للمنحنى  $(C_f)$  عند النقطة ذات الفاصلة 0 والذي معادلته T هو المماس للمنحنى T النقطة T النقطة T هي مركز تناظر للمنحنى T .



- . (d) اكتب معادلة المستقيم (1
- . p عين قيمتي كل من m و m عين قيمتي كل من m و (2
  - $x \in \mathbb{R}$  حيث ، f(-x) + f(x) : حيث (3
    - . b و a من كلا مين كلا مات السابقة عين كلا من a
      - . m=p=1 و b=0 ، a=-e : بوضع

(1

- أ) بين أن f' مشتقة الدالة f' زوجية .
- .  $f'(x) = 1 + (2x^2 1)e^{-x^2 + 1}$  :  $x \in \mathbb{R}$  بين أنه من أجل كل
  - ج) ادرس تغیرات الدالهٔ f' وشکل جدول تغیراتها .
- . eta عصرا لـ lpha عصرا لـ lpha عند lpha المعادلة lpha المعادلة lpha تقبل حلين lpha و lpha حيث lpha حيث lpha المعادلة lpha
  - . (d) عين معادلتي مماسي  $(\mathcal{C}_f)$  ،  $(\mathcal{C}_f)$  عين معادلتي مماسي ( $\mathcal{C}_f$

(3

- أ) ارسم  $(T_1)$  و  $(T_2)$  في المعلم السابق.
- f(x) = x + m: عدد وإشارة حلول المعادلة مسب قيم الوسيط الحقيقي m عدد وإشارة حلول المعادلة على الوسيط الحقيقي

انتمى الموضوع