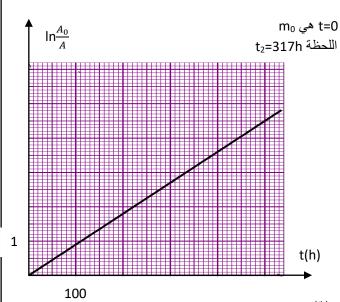


Etablissement privé d'éducation et d'enseignement - L'iniâtre


المؤسسة الخاصة للتربية و التعليم - أ إينيا تو

دىسمبر 2019

المستوى: الثالثة رياضيات

اختبار الثلاثى الأول فى العلوم الفيزيائية

التمرين الأول (6 نقاط)

 m_0 هي اللحظة t=0 كتاتها في اللحظة t=0 كتاتها في اللحظة t=0 هي مخبر على فارورة بها عينة مشعة من التاليوم t_2 =317h في اللحظة t_1 =1,4 أصبح عدد الانوية في القارورة N_1 =1,4 أصبح عدد الانوية في القارورة أ

 $N_2=3,5 \ 10^{16}$ أصبح عدد الانوية في القارورة

 ^{201}Tl إلى ^{201}Pb الرصاص ^{201}Pb إلى ^{201}Tl

أ/ أكتب معادلة التفكك و أذكر نمط هذا التفكك

 201_{Ph} ب/ما المقصود بالنظائر . هل 201_{Tl} هو نظير

2 أ/ عرف زمن نصف العمر $t_{1/2}$ لعينة مشعة

 $t_{1/2}$ ثم أحسب قيمة t_2 - $t_1 = 2t_{1/2}$ ثم أحسب قيمة

 m_0 أحسب قيمة

د/ أحسب نشاط العينة A₀ في اللحظة 1=0

 $\ln \frac{A_0}{A_0}$ القارورة من إنجاز الصانع . ممثل عليها $\ln \frac{A_0}{A_0}$

بدلالة الزمن حيث A هو نشاط العينة في اللحظة t

أ/ عبر عن $\ln \frac{A_0}{A}$ بدلالة الزمن

ب/ باستغلال هذه الوثيقة تأكد من قيمة زمن نصف العمر لـ 201_{Tl} المحسوب سابقا

التمرين الثاني (6,5 نقاط)

الدارة الموضحة في الشكل تضم: مولد كهربائي قوته المحركة E ناقل أومي مقاومته R و مكثفة سعتها C و قاطعة K .

عند اللحظة t=0 نغلق القاطعة . جهاز مناسب سمح لنا بمتابعة تطور شدة التيار المار في الدارة و كذلك تطور كمية الكهرباء بدلالة الزمن

1/ ما هي الظاهرة الفيزيائية الحادثة في المكثفة

2/ بين أن المعادلة التفاضلية التي يحققها شدة التيار تكتب على الشكل

حيث β ثابت موجب $\beta \frac{di(t)}{dt} + i(t) = 0$

أ/ إستنتج عبارة الثابت β و ماذا يمثل فيزيائيا

. $i(t) = \lambda e^{-\alpha t}$ ب/ هذه المعادلة التفاضلية تقبل حلا من الشكل

C , R , E بدلالة α من α و α بدلالة

ج/ تحقق أن عبارة كمية الكهرباء تعطى بالعلاقة التالية

$$q(t) = EC \left(1 - e^{\frac{t}{RC}} \right)$$

3/ أوجد اللحظة التي تكون فيها شحنة المكثفة تساوى نصف قيمتها الاعظمية

E ما هي عبارة U_R في تلك اللحظة بدلالة U_R

5/ ما هي النسبة بين الطاقة المخزنة في المكثفة في تلك اللحظة و الطاقة المخزنة الاعظمية

التمرين الثالث (7.5 مقاط)

يتفاعل معدن الزنك مع محلول حمض كلور الماء (H3O+, Cl-) و ينمذج التحول الكيميائي بالمعادلة الكيميائية التالية:

 $Zn + 2H_3O^+ = Zn^{2+} + H_2 + 2H_2O$

في اللحظة t=0 نضع كتلة m=1g من الزنك في كأس بيشر و نضيف حجما V=40ml من محلول حمض كلور الماء تركيزه المولي (C=5,0 10-1mol/l

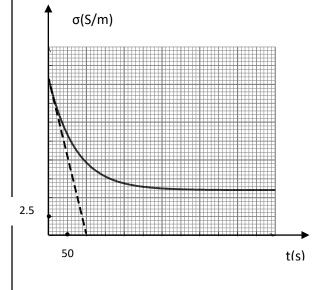
نغمر مصبار جهاز الناقلية و نقيس الناقلية النوعية σ . هذه النتائج مكنتنا من رسم منحنى تغيرات الناقلية النوعية σ بدلالة الزمن 1 برر اختيار متابعة هذا التحول بطريقة قياس الناقلية.

2/ حدد الثنائيتان (Ox / Red) المتفاعلتان

3/ هل المزيج الابتدائي ستوكيومتري

4/ قدم جدول لتقدم التفاعل . . ما سبب تناقص الناقلية النوعية. إستنتج المتفاعل المحد و حدد التقدم الاعظمي باعتبار التحول تام

 $\sigma(t) = 21.5 - 1550x$ الناقلية النوعية تكنب على الشكل الناقلية النوعية النوعية تكنب على الثاقلية النوعية الناقلية النوعية الناقلية الناق


6/ جد التركيب المولي للمزيج و كتلة الزنك المتبقية في اللحظة t=100s

7/ أحسب الناقلية النوعية للمزيج عند استهلاك نصف كمية

 $t_{1/2}$ للمحد . حدد زمن نصف التفاعل المتفاعل

8/ بين أن السرعة الحجمية للتفاعل تعطى بالعلاقة التالية

t=0 ثم أحسب قيمتها عند اللحظة $v_{\text{vol}}=-\frac{1}{1550V}\frac{d\sigma}{dt}$

المعطيات:

 $\lambda(H_3O^+) = 35,5. \ 10^{-3} \ S.m^2.mol^{-1} \quad \lambda(Cl^-) = 7,5.10^{-3} \ S.m^2.mol^{-1}$

M (Zn) = 65.4g/mol \mathfrak{z} $\lambda(Zn^{2+}) = 9.0.10^{-3} \text{ S.m}^2.\text{mol}^{-1}$

التصحيح النموذجي

$$\beta^+$$
 النمط: إصدار جسيمات β^+ النمط: إصدار جسيمات β^+ النظائر هي الذرات التي تتمز بنفس عدد الذري و تختلف في عدد الكتلي و منه Pb و TI ليست بنظائر تعريف زمن نصف العمر : هو الزمن اللازم تفكك نصف عدد أنوية الابتدائية

يف رمن نصف العمر: هو الرمن اللارم نفكك نصف عدد انويه الابند
$$N_1$$
= $N_0e^{-\lambda t_1}$ (a) N_2 = $N_0e^{-\lambda t_2}$ (b)

$$\frac{N_1}{N_2} = \frac{N_0 e^{-\lambda t_1}}{N_0 e^{-\lambda t_2}} = 4 \qquad 4 = e^{\lambda (t_2 - t_1)} \qquad \text{In4} = \lambda (t_2 - t_1) \qquad \text{In4} = \ln 2^2 = 2 \ln 2$$

$$2\ln 2 = \lambda(t_2 - t_1) \quad , \ln 2 = \lambda t_{1/2} \quad 2\lambda t_{1/2} = \lambda(t_2 - t_1) \qquad 2t_{1/2} = t_2 - t_1 \ , \qquad t_{1/2} = 73,35h \quad , \lambda = 9,4 \ 10^{-3} \ h^{-1} = 1,09 \ 10^{-7} s^{-1} + 10^{-1} s^{-1} + 10^$$

$$m = 0.23$$
mg $m_0 = \frac{MN_0}{N_A}$ و منه $N_0 = 6.9 \ 10^{17}$ بعد الحساب نجد

$$A_0=7,52~10^{10}$$
Bq بعد الحساب نجد $A_0=\lambda N_0$ بعد الحساب نجد $\ln \frac{A_0}{A}=\lambda~t$ و منه معامل التوجيه يمثل $\Delta = A_0 = \lambda N_0$

$$t_{1/2} = \frac{ln2}{9.10^{-3}} = 76,66 \text{ h}$$
 $\lambda = 9.10^{-3} \text{ h}^{-1}$ و منه $\tan \alpha = 10^{-3} \text{ h}^{-1}$ و منه $\tan \alpha = 10^{-3} \text{ h}^{-1}$ حساب معامل التوجيه

في حدود الأخطاء المرتكبة في القياسات لرسم البيان:

النتيجتين متقار بتين

(1)
$$\frac{du_R}{dt} + \frac{du_C}{dt} = 0$$
 بعد الأشتقاق نجد $U_R + U_C = E$

$$U_R = Ri$$
 $\frac{du_R}{dt} = R \frac{di}{dt}$, $i = c \frac{du_c}{dt}$, $\frac{du_c}{dt} = \frac{i}{c}$

بالمطابقة $\beta = RC$: ثابت الزمن : هو الزمن اللازم حتى يكون u_c بين طرفي المكثفة = 0,63 من قيمته الاعظمية

$$U_{c}(\tau) = 0.63E$$

$$\lambda~e^{-\beta t}$$
 (1 -RC β) =0 RC(- $\lambda\beta~e^{-\beta t}$) + $\lambda~e^{-\beta t}$ =0

$$\frac{di}{dt} = -\lambda \beta \ e^{-\beta t} \qquad i = \lambda e^{-\beta t}$$

$$\lambda = I_0$$
 و من الشروط الابتدائية $eta = rac{1}{RC}$

$$q=Q_0(1-e^{-t/RC})$$
 $q=\frac{Q_0}{2}$, $\frac{q}{Q_0}=1-e^{-t/RC}$ $\frac{1}{2}=1-e^{-t/RC}$, $e^{-t/RC}=\frac{1}{2}$, $\ln 2=\frac{t}{RC}$, $t=RC\ln 2$

$$u_R = \frac{E}{2}$$
 نجد أن t=RCIn2 بعد التعويض بالقيمة $u_R = Ee^{-t/RC}$

و بالتالي تكون النسبة تساوي
$$E_c = \frac{1}{2} CE^2$$
 و الطاقة الاعظمية $u_c = \frac{E}{2}$ و بالتالي تكون النسبة تساوي $u_c = \frac{E}{2}$

1/ وجود الشوارد في المحلول تمكننا من متابعة الزمنية بطريقة قياس الناقلية

$$H_2/H_3O^+$$
 , Zn / Zn²⁺

2/ الثنائيتان هما

$$n_1 = \frac{m}{M} = \frac{1}{65.4} = 0,015 \text{ mol }, \frac{n_2}{2} = \frac{CV}{2} = 10^{-1} \text{mol}$$
 $n_1(Zn)/1 = n_2/2$

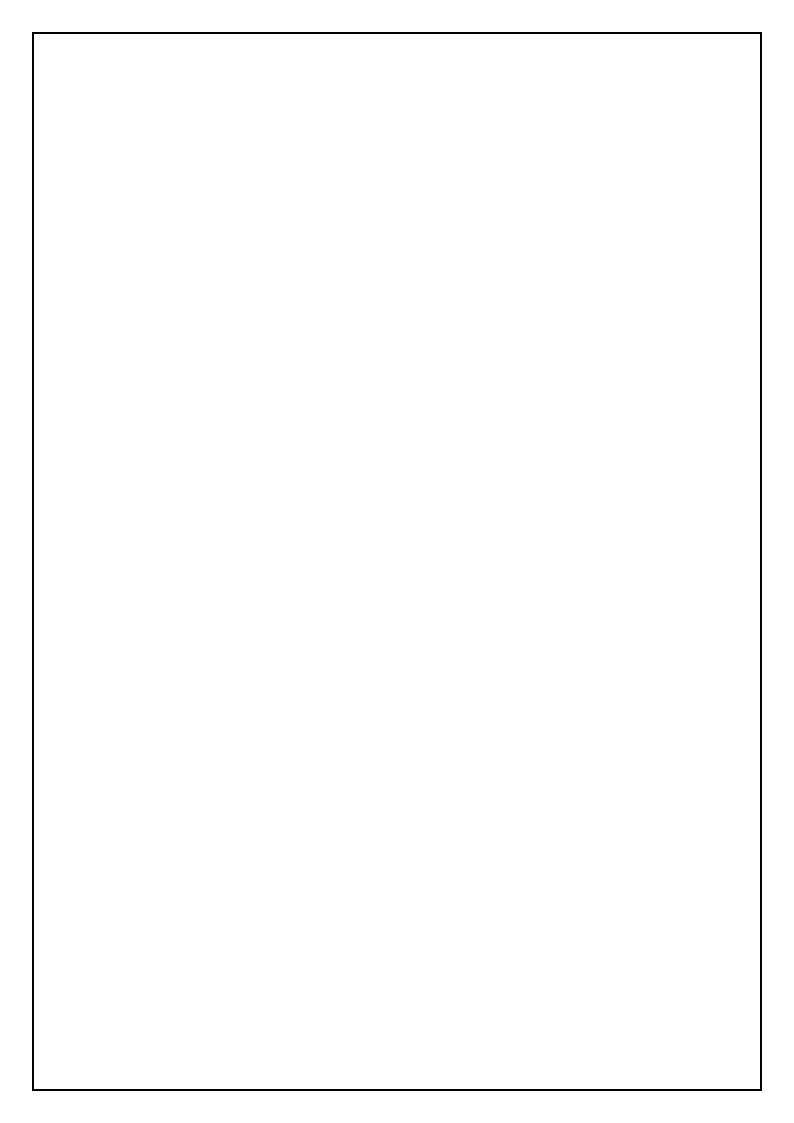
3/ إذا كان المزيج ستوكيومتري لابد أن

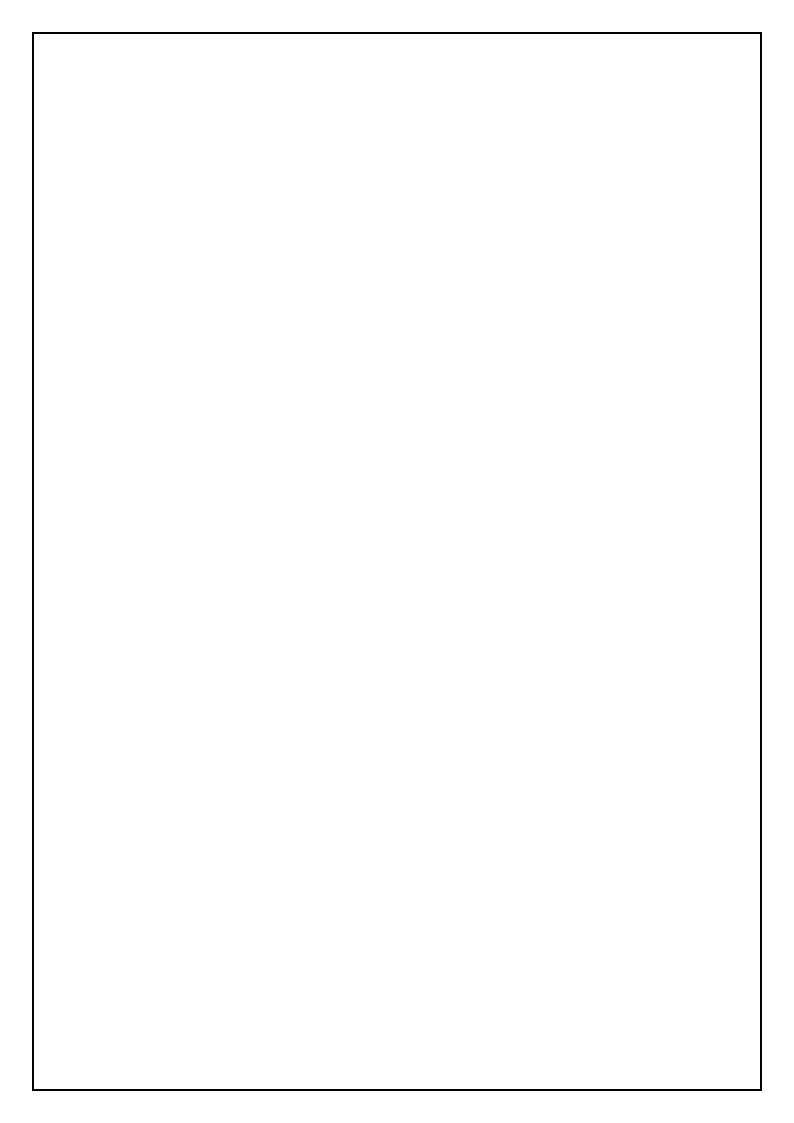
بعد الحساب نجد ان المتفاعل المحد هو الحمض حيث xmax=0.01 mol

x = 9,3mmol نجد أن الناقلية $\sigma = 21,5 - 1550x$ و منه من العلاقة $\sigma = 75/m$ نجد أن الناقلية

	Zn	H₃O ⁺	Zn ²⁺	H ₂
t=0	0.015	0.02	0	0
t=100s	15-9	20-2*9	9	9
	6mmol	2mmol	9mmol	9mmol

m = n.M = 0.009 * 65.4 = 0.59g كتلة الزنك


$$\sigma$$
 = 21.5 – 1550* 0.005 = 13.75 S/m و منه $x = \frac{x_{max}}{2}$ = 0.005mol


من البيان نجد 50s = t_{1/2} =

$$V_{\text{vol}} = \frac{1}{V} \frac{dx}{dt} = \frac{1}{V} \frac{d(\frac{21.5}{1550} - \frac{1}{1550} \sigma)}{dt} = -\frac{1}{V*1550} \frac{d\sigma}{dt}$$

 $V_{Vol} = -0.016(-0.215) = 0.0034 \text{mol/l.s}$

	التمرين الاول	التمرين الثاني	التمرين الثالث
1	0,25*4	0.5	1
2	0.5 +2+1+0.5	1.5+0.5*2+1+0.5	0.5*2
3	0.5*2	0.5	1
4		0.5	0.5*3
5		0.5*2	0.5*2
6			0.5
7			1+0.5
	6	6.5	7.5

