## الجمهورية الجزائرية الديمقراطية الشعبية

## من إعداد الأستاذ: زروقي عيسي

## مواضيع لتحضير بكالوريا 2020

# الموضوع الثالث

#### التمرين الأول

 $A(n) = n^2 - n + 2007$ : نضع من أجل كل عدد صحيح

- A(1) أ حلل إلى جداء عوامل أولية العددان 4014 و A(1)
  - A(1) ب أوجد القاسم المشترك الأكبر للعددين + 4014 و
- 2) بين أنه إذا كان 3 يقسم n فإن 3 يقسم A(n) ، وهل العكس صحيح ? برر إجابتك .
- $(n+1)^2 (n+1) + 2007 = (n^2 n + 2007) + 2n$ : n عدد صحیح (3) تحقق أنه من أجل كل عدد صحیح
  - . عدد فردي فإن A(n+1) عدد فردي A(n) عدد فردي A(n+1)
  - A(1) عين الاعداد الصحيحة n التي يكون من أجلها A(n) يقسم (5)

## التمرين الثاني:

عين في كل حالة من الحالات التالية الاقتراح الوحيد مع التبرير

y'+3y=0 جموعة حلول المعادلة التفاضلية (1

| $y = Ce^{\frac{1}{3}x}$ $y = Ce^{\frac{-1}{3}x}$ $y = Ce^{-3x}$ |                         |                          |               |                |
|-----------------------------------------------------------------|-------------------------|--------------------------|---------------|----------------|
|                                                                 | $y = Ce^{\frac{1}{3}x}$ | $y = Ce^{-\frac{1}{3}x}$ | $y = Ce^{3x}$ | $y = Ce^{-3x}$ |

y'-2y=6 مجموعة حلول المعادلة التفاضلية (2

|                                                | 1                           |                   |
|------------------------------------------------|-----------------------------|-------------------|
| $y = Ce^{-\frac{1}{2}x} + 3$ $y = Ce^{2x} - 3$ | $y = Ce^{\frac{-x}{2}} + 3$ | $y = Ce^{2x} + 3$ |

العدد  $3-\ln(e^2)+e$  يساوي (3

| 1+e | 2 | 0 | 2-e                |
|-----|---|---|--------------------|
|     |   |   | $-3\ln(2)$ . 11 (4 |

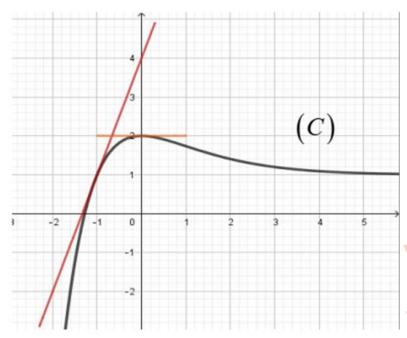
العدد  $e^{-3\ln(2)}$  يساوي (4

| 1 | 1                        | 8 | 1 |
|---|--------------------------|---|---|
| 9 | $\frac{\overline{8}}{8}$ |   |   |

حلول المعادلة  $e^{2x} - 5e^x + 6 = 0$  هي (5

| $\left\{e^2;e^3\right\}$ | $\left\{\ln\left(\frac{1}{2}\right);\ln\left(\frac{2}{3}\right)\right\}$ | $\left\{\ln(2);\ln(3)\right\}$ | {2;3} |
|--------------------------|--------------------------------------------------------------------------|--------------------------------|-------|
|--------------------------|--------------------------------------------------------------------------|--------------------------------|-------|

### لتمرين الثالث:



- المستوي منسوب الى المعلم المتعامد و (C) المتحامد و المتجانس  $(C; \vec{i}; \vec{j})$  ، المنحنى  $\mathbb{R}$  كما يلي : الشكل هو لدالة f معرفة على  $\mathbb{R}$  كما يلي :  $f(x) = (ax + b)e^{-x} + 1$  عددان حقیقیان .
- و  $\lim_{x \to \infty} f\left(x\right)$  و بيانية عين  $\lim_{x \to \infty} f\left(x\right)$  و  $\lim_{x \to \infty} f\left(x\right)$  فسر النهاية الأخيرة بيانيا .
  - f(1) ، f(0): ب f(1) ، f(0): مین کل من f'(1): . f'(0):
- $f\left(x
  ight)$  على ما سبق جد قيمة كل من a و a ثم استنتج عبارة -
- $-1,4\prec lpha \prec -1,2$  حيث  $\alpha$  حيث  $f\left(x\right)=0$  حلا وحيدا  $\alpha$  حيث  $-1,4\prec lpha$ 
  - .  $\mathbb{R}$  على  $f\left(x\right)$  على استنتج إشارة
  - $(h(x) = (|x|+1)e^{-x} + 1 : -1]$ بـ بـ  $e^{-x} + 1 : -1$  بـ بالدالة h المعرفة على R
- $(\lim_{x\to 0}\frac{e^{-x}-1}{x}=-1:$  حسب کلا من  $\lim_{x\to 0}\frac{h(x)-2}{x}$  و  $\lim_{x\to 0}\frac{h(x)-2}{x}$  و احسب کلا من  $\lim_{x\to 0}\frac{h(x)-2}{x}$  و احسب کلا من
  - $g(x) = x \frac{x+2}{e^x}$  في يلي  $\mathbb{R}$  ونعتبر الدالة g المعرفة على  $\mathbb{R}$  كما يلي  $f(x) = (x+1)e^{-x} + 1$  ونعتبر الدالة g(x) = 1 منحناها البيانى في المستوي المنسوب الى معلم متعامد ومتجانس g(x) = 1 ، g(x) منحناها البيانى في المستوي المنسوب الى معلم متعامد g(x) .  $\lim_{x \to +\infty} g(x)$  و  $\lim_{x \to +\infty} g(x)$  .  $\lim_{x \to +\infty} g(x)$  .  $\lim_{x \to +\infty} g(x)$ 
    - $(+\infty)$  بين أن المستقيم (T) ذو المعادلة y=x مقارب مائل لمنحنى الدالة g بجوار  $(-\infty)$ 
      - g'(x)=f(x): فإن انه من أجل كل عدد حقيقي x فإن أنه من أجل كل عدد x
        - ب استنتج اتجاه تغیر الدالة g ثم شکل جدول تغیراتها .

 $g(\alpha)=\alpha+1+\frac{1}{\alpha+1}$ بين أن  $g(\alpha)=\alpha+1+\frac{1}{\alpha+1}$  ثم استنتج حصرا للعدد .4

.  $(C_g)$  والمنحنى (T)،  $(\Delta)$  من  $(\Delta)$  من (B(0) والمنحنى (B(0)

p(x) = x + m وسيط حقيقي ، ناقش حسب قيم p(x) = m عدد و إشارة حلول المعادلة p(x) = x + m



انتمـــی

## حل الموض<u>وع الث</u>الث

#### التمرين الأول:

 $A(n) = n^2 - n + 2007$ : من أجل كل عدد صحيح n نضع عدد صحيح

: A(1) أ – تحليل إلى جداء عوامل أولية للعددين 4014 و (1)

$$A(1) = (1)^{2} - 1 + 2007 = 2007 = 3^{2} \times 223$$

$$4014 = 2A(1) = 2 \times 3^{2} \times 223$$

A(1) بA(1) بايجاد القاسم المشترك الأكبر للعددين 4014 و

#### $p \gcd(A(1); 4014) = p \gcd(A(1); 2A(1)) = A(1) = 2007$

A(n) التبين أنه إذا كان 3 يقسم n فإن 3 يقسم (2

-n لدينا : 3 يقسم n وبالتالي 3 يقسم  $n^2$  وn و يقسم n وبالتالي 3 يقسم

n ومن جمة اخرى 3 يقسم 2007 ومنه : إذا كان 3 يقسم n فإن 3 يقسم  $n^2-n+2007$  أي : إذا كان 3 يقسم  $A\left(n\right)$  فإن 3 يقسم

العكس غير صحيح لأن : 2019 = 2007 = A(n) أي أن 3 يقسم A(n) من أجل 4 = لكن 3 لا يقسم 4 .

 $(n+1)^2 - (n+1) + 2007 = (n^2 - n + 2007) + 2n : n$  عدد صحيح (3)

$$(n+1)^{2} - (n+1) + 2007 = [n^{2} + 2n + 1] - (n+1) + 2007$$
$$= n^{2} + 2n - n + 1 - 1 + 2007$$
$$= n^{2} + n + 2007$$
$$= (n - n + 2007) + 2n$$

: عدد فردي فإن A(n+1) عدد فردي A(n) عدد فردي (4

 $A\left(n\right)=2k+1$  : k عدد صحیح  $A\left(n\right)$  فردي فإنه یوجد عدد صحیح

: کان 
$$A(n+1) = (n+1)^2 - (n+1) + 2007$$
 کان  $A(n+1) = (n+1)^2 - (n+1) + 2007$  کان  $A(n+1) = A(n) + 2n = 2k + 1 + 2n = 2(k+n) + 1$ 

نضع: 
$$k'=k+n$$
 ومنه:  $k'=2k'+1$  حيث  $k'=k+n$  عدد صحيح

الخلاصة : إذا كان A(n) عدد فردي فإن A(n+1) عددفردي كذلك .

## A(1) تعين الاعداد الصحيحة n التي يكون من أجلها A(n) يقسم (5)

: يقسم (1) معناه 2007 معناه 
$$n^2-n+2007$$
 يقسم (1) يقسم  $A(n)$  يقسم  $A(n)$  يقسم (1) عبد عبد  $A(n)$  يقسم (1) يق

| $n^2 - n + 2007 =$ | -2007 | -669 | -223     | -9  | -3     | -1 | 1 3 | 9 | 223 | 669 | 2007 |
|--------------------|-------|------|----------|-----|--------|----|-----|---|-----|-----|------|
|                    |       | P    | i = 1 أو | n = | ومنه 0 |    |     |   |     |     |      |

#### التمرين الثاني:

تعين في كل حالة من الحالات التالية الاقتراح الوحيد مع التبرير

- $y = Ce^{-3x}$  هو y' = -3y وأي y' + 3y = 0 المعادلة التفاضلية y' = -3y
- $y = Ce^{2x} 3$   $y = Ce^{2x} \frac{6}{2}$  y = y' = 2y + 6 y' + 2y = 6 y' + 2y = 6 y' + 2y = 6
  - $3-\ln(e^2)+e=3-2+e=1+e$  . العدد  $3-\ln(e^2)+e=3-1+e$  يساوي  $3-\ln(e^2)+e=3-2+e=1+e$  (3)
    - $e^{-3\ln(2)} = e^{\ln(2)^{-3}} = 2^{-3} = \frac{1}{2^3} = \frac{1}{8}$  : نالوي  $e^{-3\ln(2)}$  يساوي (4
  - $t^2 5t + 6 = 0$  علول المعادلة  $t = e^x$  هي  $\{\ln(2); \ln(3)\}$  هي  $e^{2x} 5e^x + 6 = 0$  تصبح المعادلة (5

$$t_2=2$$
 ومنه تقبل حلین متایزین ها :  $\Delta = (-5)^2 - 4(1)(6) = 25 - 24 = 1$  ومنه تقبل حلین متایزین و  $\Delta = (-5)^2 - 4(1)(6) = 25 - 24 = 1$ 

 $e^x=2 \Rightarrow x=\ln(2)$  ،  $e^x=3 \Rightarrow x=\ln(3)$  : بالعودة الى المتغير الأصلي

#### التمرين الثالث

- المستوي منسوب الى المعلم المتعامد و المتجانس  $(O;\vec{i};\vec{j})$  ، المنحنى (C) في الشكل هو لدالة f معرفة على g كما يلى :  $f(x) = (ax+b)e^{-x} + 1$  حيث g عددان حقيقيان .
  - . أ بقراءة بيانية تعين f(x) و  $\lim_{x\to\infty} f(x)$  و تفسير النهاية الأخيرة بيانيا .

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (ax + b)e^{-x} + 1 = 1 \quad \text{(} \qquad \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (ax + b)e^{-x} + 1 = -\infty$$

المستقيم ذو المعادلة y=1 هو مستقسم مقارب افقى موازي لمحور الفواصل بجوار y=1 .

. 
$$f'(-1)$$
 ،  $f'(0)$  ،  $f(1)$  ،  $f(0)$  : نعين كل من

$$f(-1)=1 \quad f(0)=2$$

f'(0) = 0 هو معامل توجيه الماس في النقطة التي فاصلتها 0 وهو افقي وعليه: f'(0) = 0

- f'(-1) هو معامل توجيه الماس في النقطة التي فاصلتها 1- والمار بالنقطتين (0;4) و (2;-2) وعليه f'(-1)

$$f'(-1) = \frac{\Delta y}{\Delta x} = \frac{4 - (-2)}{0 - (-2)} = \frac{6}{2} = 3$$

 $f\left(x
ight)$  ج اعتمادا على ما سبق ايجاد قيمة كل من a و استنتاج عبارة -

$$\begin{cases} b=1\\ a=1 \end{cases} : \text{ais} \quad \begin{cases} b=1\\ (-a+1)e=0 \end{cases} : \text{ais} \quad \begin{cases} b+1=2\\ (-a+b)e+1=1 \end{cases}$$
 ومنه 
$$\begin{cases} (a(0)+b)e^0+1=2\\ (a(-1)+b)e^{-1}+1=1 \end{cases} : \text{dist} \quad \begin{cases} f(0)=2\\ f(-1)=1 \end{cases} : \text{dist} \quad \begin{cases} f(0)=2\\ (-a+b)e+1=1 \end{cases} : \text{dist} \quad \begin{cases} (a(0)+b)e^0+1=2\\ (a(-1)+b)e^{-1}+1=1 \end{cases} : \text{dist} \quad \begin{cases} (a(0)+b)e^0+1=2\\ (a(-1)+b)e^{-1}+1=1 \end{cases} : \text{dist} \quad \begin{cases} (a(0)+b)e^0+1=2\\ (a(0)+b)e^{-1}+1=1 \end{cases} : \text{dist} \quad \begin{cases} (a(0)+b)e^0+1=2\\ (a(0)+b)e^0+1=1 \end{cases} : \text{dist} \quad \begin{cases} (a(0)+b)e^0+1=2\\ (a(0)+b)$$

 $x = -1,4 < \alpha < -1,2$  حيث x = 0 حين f(x) = 0 حين أن المعادلة تقبل f(x) = 0

 $f(-1,2) \times f(-1,4) \prec 0$  و f(-1,4) = -0.62 و f(-1,2) = 0.33 و f(-1,2) = 1.4; -1.2 و  $f(-1,2) \times f(-1,4) \prec 0$  و  $f(-1,2) \times f(-1,2) = 0.33$  ومنه حسب مبرهنة القيم المتوسطة المعادلة f(x) = 0 تقبل حلا وحيدا  $\alpha$  حيث f(x) = 0

## $\mathbf{r} = \mathbf{r}$ ب – استنتاج إشارة $\mathbf{r}(x)$ على

نلخص النتائج في الجدول التالى:

|      |    |   | *        | * |    |
|------|----|---|----------|---|----|
| x    | -8 |   | $\alpha$ |   | +∞ |
| f(x) |    | - | 0        | + |    |

 $h(x) = (|x|+1)e^{-x} + 1 : \mathbb{R}$  بالمعرفة على المعرفة على عتبر الدالة h

 $\lim_{x \to 0} \frac{h(x)-2}{x}$ و  $\lim_{x \to 0} \frac{h(x)-2}{x}$  عساب كلا من  $\lim_{x \to 0} \frac{h(x)-2}{x}$  و  $\lim_{x \to 0} \frac{h(x)-2}{x}$  عساب كلا من

$$\lim_{x \to 0} \frac{h(x) - 2}{x} = \lim_{x \to 0} \left[ \frac{(|x| + 1)e^{-x} + 1 - 2}{x} \right] = \lim_{x \to 0} \left( \frac{(x + 1)e^{-x} - 1}{x} \right) = \lim_{x \to 0} \left( \frac{xe^{-x} + e^{-x} - 1}{x} \right) = 1 - 1 = 0$$

$$\lim_{x \to 0} \frac{h(x) - 2}{x} = \lim_{x \to 0} \left[ \frac{(|x| + 1)e^{-x} + 1 - 2}{x} \right] = \lim_{x \to 0} \left( \frac{(-x + 1)e^{-x} - 1}{x} \right) = \lim_{x \to 0} \left( \frac{-xe^{-x}}{x} + \frac{e^{-x} - 1}{x} \right) = -2$$

#### التفسير الهندسي:

الدالة لا تقبل الاشتقاق عند النقطة التي فاصلتها 0 ومنحناها يقبل يقبل نصفي مماسي معامل توجيهها 0 و 2-.

و 
$$g(x) = x - \frac{x+2}{e^x}$$
 فيما يلي:  $f(x) = (x+1)e^{-x} + 1$  ونعتبر الدالة  $g$  المعرفة على  $g(x) = x - \frac{x+2}{e^x}$  فيما يلي:  $g(x) = x - \frac{x+2}{e^x}$  فيما يلي:  $g(x) = x - \frac{x+2}{e^x}$  في المستوي المنسوب الى معلم متعامد ومتجانس  $g(x) = x - \frac{x+2}{e^x}$  منحناها البياني في المستوي المنسوب الى معلم متعامد ومتجانس  $g(x) = x - \frac{x+2}{e^x}$  منحناها البياني في المستوي المنسوب الى معلم متعامد ومتجانس  $g(x) = x - \frac{x+2}{e^x}$ 

## . $\lim_{x \to +\infty} g(x)$ و $\lim_{x \to +\infty} g(x)$ من $\lim_{x \to +\infty} g(x)$

$$\lim_{x \to -\infty} g\left(x\right) = \lim_{x \to -\infty} \left(x - \frac{x+2}{e^x}\right) = \lim_{x \to -\infty} x \left(1 - \frac{1 + \frac{2}{x}}{e^x}\right) = +\infty$$

$$\lim_{x \to +\infty} g\left(x\right) = \lim_{x \to +\infty} \left(x - \frac{x+2}{e^x}\right) = \lim_{x \to +\infty} \left(x - \frac{x}{e^x} + \frac{2}{e^x}\right) = +\infty$$

y=x مقارب مائل لمنحنى الدالة g بجوار ( $\infty$ +).

$$\lim_{x \to +\infty} \left[ g(x) - x \right] = \lim_{x \to +\infty} \left( x - \frac{x+2}{e^x} - x \right) = \lim_{x \to +\infty} \left( -\frac{x}{e^x} + \frac{2}{e^x} \right) = 0 :$$

فإن المستقيم ذو المعادلة y=x مقارب مائل لمنحنى الدالة g بجوار  $(\infty+)$ .

# g'(x) = f(x) : ودالتها المشتقة هي: g'(x) = f(x) على g ودالتها المشتقة هي:

$$g'(x) = \left(x - \frac{x+2}{e^x}\right)' = \left(x - \left(x+2\right)e^{-x}\right)' = 1 - \left(\left(1-x-2\right)e^{-x}\right) = 1 - \left(-x-1\right)e^{-x} = f(x)$$

## ب - استنتاج اتجاه تغير الدالة g ثم تشكيل جدول تغيراتها :

: لدينا من السؤال السابقf(x)=f(x) ومنه إشارة g'(x) من إشارة

- $x = \alpha$  ومنه f(x) = 0 تکافئ g'(x) = 0
- $-\infty;lpha[$  ومنه g'(x) ومنه  $x\in ]-\infty;lpha[$  ومنه f(x)
- ومنه  $[\alpha,+\infty]$  ومنه  $[\alpha,+\infty]$  ومنه  $[\alpha,+\infty]$  ومنه ومنه ومنه ويرايدة تماما عل المجال  $[\alpha,+\infty]$

#### جدول التغيرات:

| x     | -∞ | α           |   | +∞ |
|-------|----|-------------|---|----|
| g'(x) | -  | 0           | + |    |
| g(x)  | +∞ | $g(\alpha)$ |   | +8 |

# $(C_s)$ المنحنى $(C_s)$ ي النقطة التي فاصلتها $(\Delta)$ للمنحنى $(\Delta)$

$$(\Delta): y = g'(-1)(x - (-1)) + g(1)$$

$$(\Delta): y = x - e$$
 : ولدينا  $(\Delta): y = 1(x+1) - 1 - e$  ومنه  $g'(-1) = -1 - e$  ومنه  $g'(-1) = f(-1) = 1$ 

$$g(\alpha) = \alpha + 1 + \frac{1}{\alpha + 1}$$
 و استنتاج حصرا للعدد .4

$$g(\alpha) = \alpha - (\alpha + 2)e^{-\alpha}$$
: لدينا

$$g\left(lpha
ight)$$
و نستخرج منها قيمة  $e^{-lpha}=rac{-1}{lpha+1}$  ونعوضها في  $e^{-lpha}=rac{-1}{lpha+1}$  ونعوضها في  $e^{-lpha}=rac{-1}{lpha+1}$  ونعوضها في و

$$g(\alpha) = \alpha - (\alpha + 2) \frac{-1}{\alpha + 1}$$

$$= \alpha + \frac{(\alpha + 1) + 1}{\alpha + 1}$$

$$= \alpha + \frac{\alpha + 1}{\alpha + 1} + \frac{1}{\alpha + 1}$$

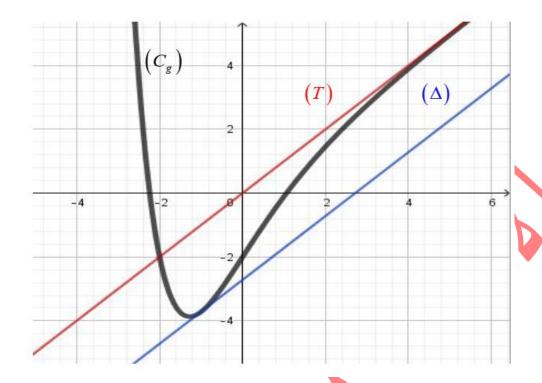
$$= \alpha + 1 + \frac{1}{\alpha + 1}$$

$$= \alpha + 1 + \frac{1}{\alpha + 1}$$

$$g(\alpha) = \alpha + 1 + \frac{1}{\alpha + 1}$$
: ومنه

$$g(0) = 0 - \frac{0+2}{e^0} = 0 - \frac{0+2}{1} = -2$$
:  $(C_g)$  والمنحنى  $(T)$ ،  $(\Delta)$  من  $(D)$  من أنشاء كلا من  $(D)$  والمنحنى  $(D)$ 

#### الانشاء:



# g(x) = x + m المناقشة حسب قيم m عدد و إشارة حلول المعادلة

حلول المعادلة g(x)=x+m هي فواصل نقط تقاطع  $(C_g)$  مع المستقيم ذو المعادلة g(x)=x+m والموازي للمستقيمين  $(\Delta)$ 

- . من أجل  $-e[-\infty;-e]$  المعادلة ليس لها حلول
- من أجل m=-e المعادلة لها حل مضاعف سالب تماما lacktriangle
- من أجل [-e;-2] المعادلة لها حلان سالبان تماما . lacktriangle
- من أجل m=-2 المعادلة لها حلان أحدهما سالب و الآخر معدوم .
  - . من أجل [-2;0] من أجل الإشارة . من أجل المعادلة لها حلان مختلفان في الإشارة .
  - من أجل  $[0;+\infty]$  المعادلة لها حل واحد سالب تماما .

انتهــــې بالتوهيـــق