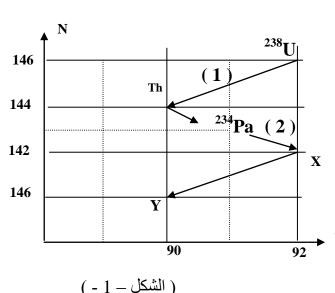
ثانوية هيباوي مولاي الوافي – أولف الموسم الدراسي: 2015 – 2016 م

المستوى: 3 ت. ر * * اختبار في مادة العلوم الفيزيائية * *


التمرين الاول: (03 نقاط)

يعطي المخطط المقابل (الشكل - 1 -) الأنوية الأولى من فصيلة اليورانيوم 238

- 1 عرف: أ/ النواة المشعة . ب/ الفصيلة المشعة .
 - $\frac{A'}{Z'}$ و $\frac{A}{Z'}$ و $\frac{A'}{Z}$ و $\frac{A'}{Z}$.
 - 3 أكتب معادلات التفككين (1) و(2) الحاصلة
 وبين نمط الإشعاع الحادث ؟
- $_{238}$ عبارة كتلتها عند اللحظة $_{1}$ عبارة كتلتها عند اللحظة $_{1}$
- $\mathbf{Z}(*)$ m(t) = (0,0025). $e^{-(1,533\times10^{-7}).t}$

. t=0 عند النوى الابتدائية N_0 عند اللحظة

ب / جد قيمة زمن نصف العمر

الفصل الثلالثي: الثاني

المدة الزمنية: 04 ساعات

التمرين الثانى: (3,5 نقاط)

يوجد قمر اصطناعي (S) على مدار ارتفاعه $850~\rm{km}$ من سطح الارض ، يدور حولها بسرعة ثابتة باعتبار نصف قطر الارض $R_t=6,37.106~\rm{km}$.

يعطى : $m=10^4~kg$ يعطى : $G=6,67.10^{-11}(~SI~)$ ، $M_t=5,97.10^{24}~kg$ يعطى : $\omega_t=7,3.10^{-5}~(\frac{rad}{s})$

المحافة بين شدة حقل $F_{t/s}$ عبارة قوة الثقل P للقمر (S) و عبارة قوة جذب الارض $F_{t/s}$ للقمر $g=g_0 \times \frac{R_t^2}{(R_t+H)^2}$ على سطح الارض هي $g=g_0 \times \frac{R_t^2}{(R_t+H)^2}$ على سطح الارض وشدة حقل الجاذبية g على ارتفاع g من سطح الارض هي g على الجاذبية g

- $F_{t/s}$ واستنتج شدة القوة المركزية المؤثرة على القمر الاصطناعي g .
- $R_t \cdot H \cdot m$ و $F_{t/s}$ و $R_t \cdot H \cdot m$. ثم $R_t \cdot H \cdot m$ و $R_t \cdot H \cdot m$. ثم المسب قيمتها .
 - ب /ارسم في مخطط مسار القمر وشعاعي السرعة V و القوة $F_{t/s}$ في موضع كيفي .
 - $_{-}$ 4 احسب قيمة السرعة الزاوية $_{0}$ للقمر الاصطناعي هل يمكن اعتباره قمرا اصطناعيا جيو مستقرا $_{-}$ علل

التمرين الثالث: (04 نقاط)

أثناء دراسة تأثير القوى الخارجية على حركة جسم ، كلف الأستاذ تلميذين بمناقشة الحركة الناتجة عن رمي جلة ، فأجاب الأول أن حركة الجلة لا تتأثر الا بثقلها ، بينما أجاب الثاني أن حركتها تتعلق بدافعة أرخميدس .

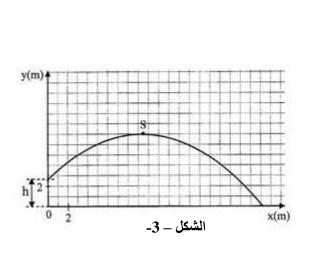
من أجل التصديق على الجواب الصحيح ، اعتمد التلميذين على دراسة الرمية التي حقق بها رياضي رقما قياسيا عالميا برمية مداها m 21.69 m .

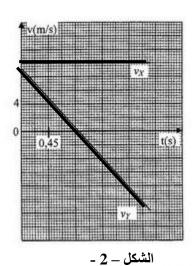
عند محاولتهما محاكاة هذه الرمية بواسطة برنامج خاص ، تم قذف الجلة (التي نعتبر ها جسما نقطيا) من ارتفاع عند محاولتهما محاكاة هذه الرمية بواسطة برنامج خاص ، تم قذف الجلة (التي نعتبر ها جسما نقطيا) من ارتفاع $V_0=13.7~{\rm m/s}$ ، فتحصلا على رسم h=2,62 m مركز عطالة الجلة والمنحنيين $V_{\rm x}$ و $V_{\rm y}$.

OY و OX و بالاعتماد على الشكل - 2 - : أ - ماهي طبيعة حركة مسقط مركز عطالة الجلة وفق كل محور V_0 و OY و V_0 بالمركبة الشاقولية لشعاع السرعة الابتدائية ثم عين القيمة V_0 للسرعة الابتدائية للقذيفة .

 $\overline{\mathbf{V}_{\mathbf{s}}}$ عين خصائص شعاع السرعة $\overline{\mathbf{V}_{\mathbf{s}}}$ عند الذروة \mathbf{S} .

 $||\vec{a}|| = ||\vec{a}||$ استنتج قيمة التسارع $||\vec{a}||$.


1-I-I بين أن دافعة أر خميدس مهملة امام ثقل الجلة . أي التلميذين على صواب 1-I


2 - بتطبيق القانون الثاني لنيوتن ، جد عبارة تسارع مركز عطالة الجلة . (نهمل مقاومة الهواء)

3 - جد معادلة المسار لمركز عطالة الجلة.

يعطى :

 $ho_{air} = 1{,}29 \; ext{kg.} \; ext{m}^{-3}$ الكتلة الحجمية للهواء ، $ho_{s} = 7{,}10 imes 10^{3} \; ext{kg.} \; ext{m}^{-3}$ الكتلة الحجمية للجا

التمرين الرابع: (3,5 نقاط)

نريد البحث عن صيغة لحمض تركيزه C والذي نرمز له AH.

- 1 عرف الحمض حسب برونستد.
- 2 أكتب معادلة تفاعل الحمض مع الماء.
- 3 انجز جدول تقدم التفاعل ثم عبر عن تراكيز الافراد الكيميائية

الموجودة في المزيج بدلالة C ، V ، x .

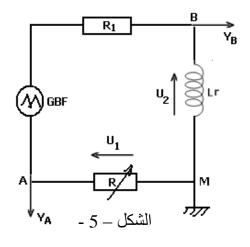
- au و au بدلالة au و au .
- $\frac{\tau^2}{1-\tau}=\mathrm{f}\left(\frac{1}{c}\right)$: البيان 4 البيان 5

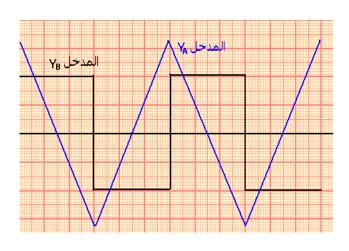
. τ ، K_a و C استنتج بيانيا العلاقة التي تربط بين

ب - حدد الحمض المستعمل في هذه التجربة من بين:

	τ^2	- 4	الشكل _	١
0,8	1 – 1	C		
0,6				
0,4				<u> </u>
0,2				1 (1)
0	100	200	300	C (mol.L ⁻¹)

C ₆ H ₅ COOH	CH ₂ ClCOOH	NH ₄ ⁺	НСООН	الحمض
4,2	2,8	9,2	3,8	pK_a


التمرين الخامس: (02 نقاط)


 $r=8~\Omega$ نريد تحديد قيمة الذاتية \perp لوشيعة مقاومتها الداخلية \perp . نقيس مقاومة الوشيعة نجد

 $R=1~{
m K}\Omega$ ننجز التركيب الموضح في الشكل -5 - بعد ضبط مقاومة المعدلة على القيمة

 $m Y_B$ عند المدخل $m U_S = U_1 \, + U_2 \,$ تغذى الدارة بمولد توتر مثلثي m GBF نعاين توتر المخرج للدارة

 $0.5~V/1~dev:Y_B$ ، المدخل $20~mV/1dev:Y_A$ ، المدخل $5~mS/1~dev:Y_B$ ، المدخل السلم المدخل ، $20~mV/1dev:Y_A$

الشكل – 6 -

- الجهاز الذي يمكننا من قياس r مقاومة الوشيعة r
 - $R \cdot r \cdot i$ و U_1 بدلالة U_2 عبر عن التوترات U_1 و U_1
- -6 عند ضبط مقاومة المعدلة على القيمة R=r نحصل على المنحنى المتناوب الموضح في الشكل 6
 - $U_{S}=-rac{L}{R}\cdotrac{dU_{1}}{dt}$: بين ان في هذه الحالة ullet
 - = 4 4 المنحنى المتناوب في المجال [0 mS 7,5 mS] :

اً ـ معادلة التوتر $U_{1}(t)$ وقيمة U_{S} . ب U_{S} قيمة $U_{I}(t)$

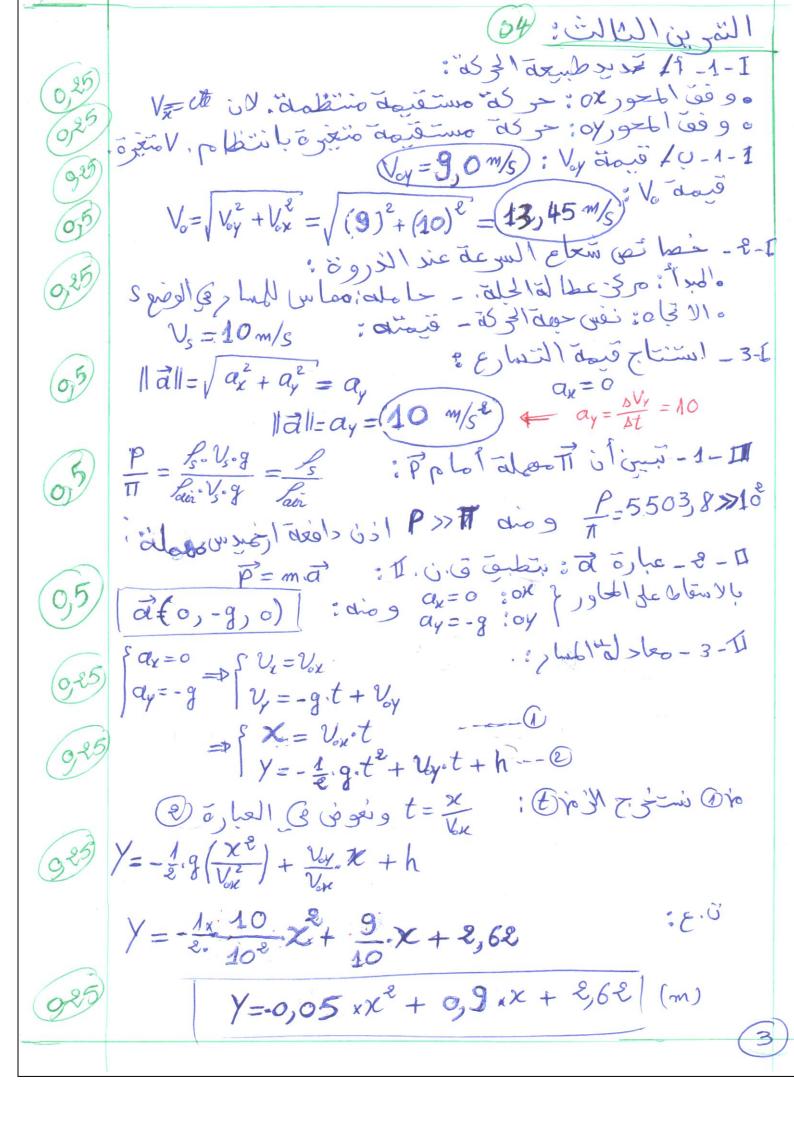
التمرين التجريبي: (04 نقاط)

نذيب كتلة m=0.93~g من الماء المقطر فنتحصل m=0.93~g في m=0.93~g من الماء المقطر فنتحصل على تركيز c_b لهذا المحلول .

نضع 50 cm^3 من هذا المحلول في بيشر ونعايره بواسطة محلول حمض كلور الماء ($H_3O^+ + Cl^-$) تركيزه المولي $C_a = 0.1 \text{ mol/L}$ بدلالة الحجم المسكوب من السحاحة فنتحصل على الجدول التالي :

$V_a(cm^3)$	0	2	4	6	8	10	12	14
pН	11,5	11,4	11,3	11,1	11	10,8	10,6	10,4

$V_a(cm^3)$	16	18	20	22	24	25	26	27
pН	10,2	10,1	10	9,6	9	6	2,8	2,5


- 1 1 ارسم مخطط البروتوكول التجريبي لهذه المعايرة 1
- 1 cm
 ightarrow 1~(~pH~)~~;~~1 cm
 ightarrow 2~mL~~: باستعمال السلم . $pH = f(~V_a)$ ارسم البيان -2
 - 3 أكتب معادلة التفاعل الحادث خلال المعايرة .
 - . C_b عين احداثيات نقطة التكافؤ ثم احسب قيمة التركيز -4
 - . ثم حدد صيغته المجملة . $C_n H_{(\,2n\,+\,1\,)}$ NH_2 للمر كب M للمركب M . ثم حدد صيغته المجملة .
 - . $(C_nH_{(2n+1)}-NH_3^+/C_nH_{(2n+1)}-NH_2^-)$ للثنائية pK_a للثنائية pK_a

M(C) = 12 g/mol ، M(H) = 1 g/mol ، M(N) = 14 g/mol : المعطيات

* * * * * * * * * * * * * * * بالتوفيق للجميع * * * * * * * * * * * * * * * * * *

النوبة: هيا وي مولاي الوافي- أولف، القسم: 3 تقنيرياضي. 2016/03/06 : pol Id co : sleg ex il into xialloud, liab laby التقيط الاجابة النود جية النفرين الأول: (دي) 1- 1/1 لنواة المسته: هم نواة غرصسعة منتفكك تلقائباً Hartelers I stable Dials Je linds J. 1-0/ الفصلة المشعة: مع معموعة من النوى النائحة عن نفس النواة الأصلية عبر سلسلة من التفككان. 236 90 Th obil 18 ZY = 90 A'= 146+90=236 ZY 3- معادلات التفكك: (of) ball. 838 U + 834 th + 4He : (1) a) = 1861 0,5 (β) bill = 34p + 234U + 2e : @ ilstell m=0,0025.e No di lin VI voil > se - f - 4 0,5 $N_{o} = \frac{m_{o}}{M} \cdot N_{A} = \frac{0,0025}{238} \times 6,02 \times 10^{23} = 6,32 \times 10^{18}$ 4-0- ento una lles $\lambda = 1,533 \times 10^{-3}$ بالمطابقة نحرز 0,5 $t_{\frac{1}{2}} = \frac{\ln 2}{1,533 \times 10^{-7}}$ ¿ dio 9 ty = 4,5.106 (s)

النورين الثاني: (5 $F_{t/s} = G_1 \frac{M_{T.m}}{(R_1 + H)^2}$ " $g = g_0 \frac{R_t^2}{(R_1 + H)^2}$ $g = g_0 \frac{R_t^2}{(R_1 + H)^2}$ $g = g_0 \frac{R_t^2}{(R_1 + H)^2}$ SH=0: m.g=G, MT.m (1) idiog Ft/s=P : list $|H \neq 0; m, g = G, \frac{M_{f, m}}{(R_{t} + H)^{2}} = 0$ $|G = G, \frac{M_{f, m}}{(R_{t} + H)^{2}} = 0$ $|G = G, \frac{R_{t}}{(R_{t} + H)^{2}} = 0$ $|G = G, \frac{M_{f, m}}{(R_{t} + H)^{2}} = 0$ $|G = G, \frac{M_{$ g=9,8x (6,37x106)2 =0 g=7,63 m/s2 Tys=P=m.g=104x363 : du 3 folio jellio sim . $F_{t/s} = 763 \times 10^4 \text{ (N)}$: RecHcmgEs Wellie Vielle 11-3 Fe/s = m, 22; dio 9 Fe/s = m. a : I. i. i. july V= (R++H). Ft/s : 3 11 6 9 V= / (6,37+9,85)x106x7,63x104 4- قبمة السرعة الزاوية W: W= +421,20 = 1,03×10-3 rod/s * لدنيا: إلى + W و بالنالي القمر(ع) ليس قمراً , jemo gir helibro }

| 025 | لمتح بن الرابع: (3,5) |
|-------|---|
| 0,25 | المتحرين الرابع و (ورد على المحرين الرابع و (ورد على المحرين الرابع و الله فقد ان الحمض حسب برو نشذ و هو و د كلما تفاعل كتاب المحل المحرية ال |
| 0,25 | Tall print $AH_{(eq)} + H_2O_{(e)} = A_{(eq)} + H_3O_{(eq)}^{\dagger}$ Tall m_0 |
| 0,5 | $\begin{bmatrix} A & A & A \\ A & A \\ A & A \end{bmatrix} = \begin{bmatrix} A & A \\ A $ |
| 0,75 | $K_{a} = \frac{[A^{-}]_{f} [H_{3}0^{+}]_{f}}{[AH]_{f}} = \frac{(\chi_{f})^{2}}{C_{o} - \chi_{f}}$ $K_{a} = \frac{(T_{f} \cdot C_{o} \cdot V)^{2}}{V}$ $K_{a} = \frac{(T_{f} \cdot C_{o} \cdot V)^{2}}{V}$ $K_{a} = \frac{(T_{f} \cdot C_{o} \cdot V)^{2}}{V}$ $K_{a} = \frac{T_{f} \cdot C_{o} \cdot V}{V}$ |
| 25 | $\frac{7^{2}}{1-2} = 0.\frac{1}{c} \iff \frac{1}{c} \implies \frac{1}{c$ |
| 5 | و منه و کا کیم العظی الحمل الحمل العمل العمل العمل العمل العلاق النظر من العلاق النظر من العلاق النظر من العلاق الما من العلم الحمل المعلى الم |
| ا واا | of leep blads lead long 1000 |

1 ling . 5 1 Elow (25 (3)

1. لا سم الجماز الذي بمكنا من قباس مقاومة الوتسجة

هو الأو صبّى ٤- عبارة الموّيّات بالولماند لاله ٢ ، ١١ م م م م

U=- U_AM = -R.2g Uz = UBM = 1.i + L. 21

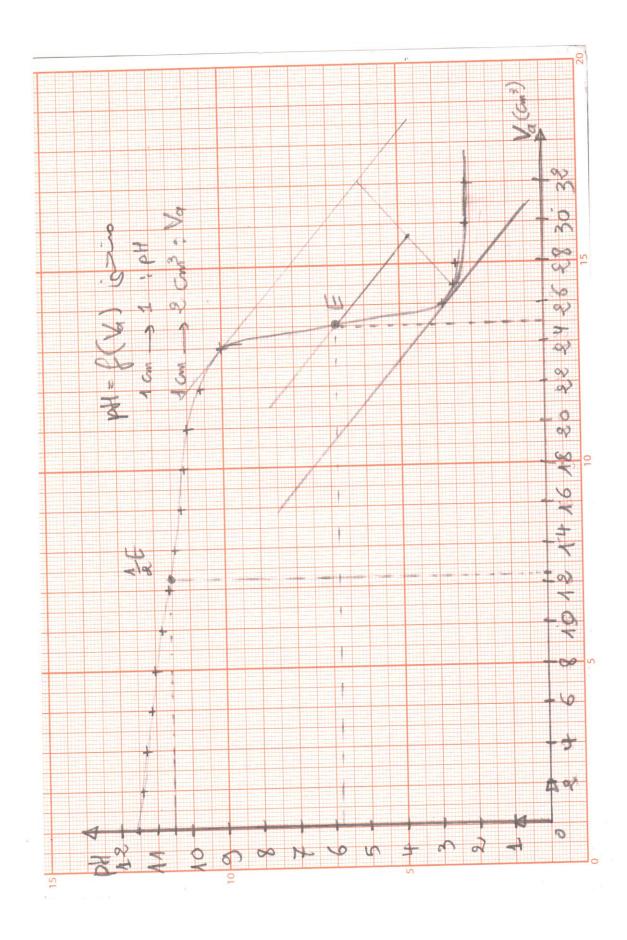
so R=r and Idal good sie -3 U= (++1)-i+Ldi; dio 9 Us=-R.i+1.i+L.di; Wish

ولدينا: ١٠١١ الذن ا على عنى المعويق

ا بجن لاح م ابد ا $U_s = \frac{L}{R} \cdot \frac{JU_1}{Jt}$

4- حساب قعمة الذاتية ع: (25) 4(+)=at+b) | [0] [0] [] Jleo(6) 5 m)

 $\frac{dV_4}{dt} = a = \frac{(0 - 3.\epsilon)x \cdot 20x \cdot 10^{-3}}{(1.5 - 0)x \cdot 5x \cdot 10^{-3}} = \frac{-64}{7.5} = -8.53$


: 32 4=95x8 5036 by 2036 0,25 (Us=1V)

وبالنالي: $U_s = -\frac{L}{R} \cdot \frac{\partial U_s}{\partial t} \implies L = \frac{R \times U_s}{R}$

 $L = \frac{8 \times 1}{8.53} = 0,94(H)$

الصفحة 9

سعاحة يحتوى التمرين التجيان و375 Job (H30,00) John de 0,5 ١- رسم مخطط القور التج يها: 8- , um / lind i, W) = Hq : felet / "al she - 3 Cn Hen+1 NH2 + H3 0+ = GH2n+1 NH3+ H20 (Cn Henty - NH2) 4- احداثیات نقطة النكافؤ: E (Va ~ 25 mL , pH ~ 5,8) * combiers il & & ldeby do 0,5 Ca VaE = Cb V sic llistie on ma= nb silsil ic $C_b = \frac{C_a \cdot V_{aE}}{V_i} = \frac{91 \times 25}{50} = 0.05 \text{ molle}$ 5- إستنتاج الكتلة المولية وتحديد الصغة المحملة: 95 $n = \frac{m}{M} = M = \frac{m}{n} = \frac{m}{C \cdot V} = \frac{0.95}{0.05 \times 0.6} = \frac{31.67 \text{g/mel}}{31.67 \text{g/mel}}$ و لدينا؛ M = m(12) + (2n+1)x(1) + 14 + 2 $M = 14x + 17 \implies n = \frac{M-17}{1.4}$ 0,5 n=31,67-17 =1 (CH3-NH2) also desolt 3. iceu eios py ulin: عند مضف المستكاعق المعناء [المام] و يحكون PH = pKa 0,5 (prible blew) \ \n = \frac{1}{28} = 12,5 ml; \/1) is | PKa = 10,5 | : 50 pH 11 grobe po

