

مارس 2020

المستوى الثالثة ثانوي رياضيات

اختبار الفصل الثاني في مادة العلوم الفيزيائية المدة: 4سا

التمرين الأول: 4 نقاط

 $Cr_2O_7^{2-}$ لمتابعة تطور تفاعل حمض الأكساليك $H_2C_2O_4(aq)$ مع شوارد ثنائي الكرومات

 $C_1 = 12$ من محلول حمض الأكساليك، تركيزه المولى: $V_1 = 50$ من محلول حمض الأكساليك، تركيزه المولى: $V_1 = 50$ من محلول حمض

 $C_2=16$ mmol/L :نرکیزه المولی: $(2K^+ '(aq) + Cr_2O_7^{2-}(aq))$ ترکیزه المولی: $V_2=50$ ml مع حجم وبوجود وفرة من حمض الكبريت المركز ننمذج التحول الحاصل بالمعادلة التالية:

 $3H_2C_2O_4(aq) + Cr_2O_7^{2-}(aq) + 8H^+(aq) = 6CO_2(g) + 2Cr^{3+}(aq) + 7H_2O(1)$

1. أ. حدّد الثنائي Ox/Red المشاركين في التفاعل

ب. أنشئ جدو لا لتقدم تفاعل، ثمّ حدّد المتفاعل المحد.

2. البيان يمثل تغيرات تركيز المولى لحمض الأكساليك بدلالة الزمن (الشكل -1)

أ. عرف السرعة الحجمية للتفاعل

ب. بيّن أن عبارة السرعة الحجمية للتفاعل في أي لحظة

$$v = -\frac{1}{3}x \frac{d\left[H_2 C_2 O_4\right]}{dt}$$

تكتب بالعلاقة

ج. أحسب قيمة السرعة الحجمية للتفاعل في اللحظة t = 12min

3. عرف ومن نصف التفاعل، ثم أحسبه.

التمرين الثاني 4 نقاط

r=30% يستعمل نظيرا البلوتونيوم المشع Pu كوقود مفاعل نووي لإنتاج الطاقة الكهربائية بمردود طاقوي

 $^{102}_{41}Nb$ تنشطر نواة البلوتونيوم $^{135}_{53}I$ إثر قذفها بنيترون إلى نواتي اليود $^{135}_{53}I$ والنيوبيوم $\oint 94^{1}p + 146^{1}n$ m(10²)u وتحرير عدد a من النيترونات. 2,4195

1. أكتب المعادلة المندمجة لتفاعل النووي الحادث، ثم أحسب قيمة العدد a

2/. تفاعل انشطار البلوتونيوم 239 هو تفاعل تسلسلي مغذى ذاتيا. فسر ذلك؟

3. يمثل الشكل-1 مخطط الحصيلة الكتلية لهذا التحول النووي

 Δm_3 , Δm_2 , Δm_1 في ماذا تمثل كل من أ

ب) اعتمادا على الخطط أوجد:

 $_{94}^{239}\,Pu$ لنواة البلوتونيوم الربط $_{I}^{E_{I}}$

- الطاقة E_{Lib} المحررة عن انشطار نواة بلوتونيوم 239 بوحدة Mev

 $\Delta m = 0,93119u$ هو ^{102}Nb اذا علمت أن النقص الكتلي لنواة النيوبيوم

102 أحسب طاقة الربط E_{I} لنواة اليود 135 ثم قارن بين استقرار نواتي اليود 135 والنيوبيوم

 Δm_1

 Δm_2

 $^{135}_{53}I + ^{102}_{41}Nb + 3^{1}_{0}n$

 $^{239}_{94}Pu + ^{1}_{0}n$

 Δm_3

2,4001

2,3981

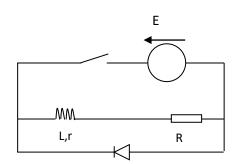
4/ . أحسب الطاقة الكهربانية التي يتنجها هذا المفاعل التووي عند استهلاك 1kg من البلوتوتيوم 239 مقدره بوحده الجول.

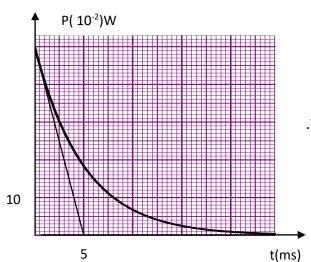
 $1 Mev = 1,6 x 10^{-13} J$, $1 u = 931,5 Mev/c^2$, $N_A = 6,02 x 10^{23} mol^{-1}$

التمرين الثالث 4 نقاط

نحقق الدارة الكهربائية الموضحة في الشكل -1 باستعمال العناصر التالية:

- مولد مثالى للتوتر قوته المحركة الكهربائية E=6V
 - وشيعة ذاتيتها L ومقاومتها الداخلية r
- ناقل أومي مقاومته $\Omega=50$ ، قاطعة k وصمام ثنائي.
 - نغلق القاطعة لمدة زمنية كافية لإقامة التيار.
- 1) عند اللحظة t=0 نفتح القاطعة k. ماهي الظاهرة التي تحدث في الدارة؟
- 2) بتطبيق قانون جمع التوترات، جد المعادلة التفاضلية التي يحققها التوتر بين طرفي الناقل الاومي $u_R(t)$
- $u_R = Ae^{-t/\tau}$ علما أن العبارة $u_R = Ae^{-t/\tau}$ علما أن العبارة ثم استنتج عبارة شدة التيار اللحظى $u_R = Ae^{-t/\tau}$.
 - 4) أكتب عبارة الاستطاعة اللحظية (P(t) للتحويل الطاقوي الحادث على مستوى الناقل الأومي R بدلالة P(t) (شدة التيار العظمى)، P(t) (ثابت الزمن للدارة) والزمن P(t)
 - 5) سمحت المتابعة الزمنية لتطور الاستطاعة اللحظية (P(t للتحويل


الطاقوي الحادث على مستوى الناقل الأومى R بواسطة لاقط الواط متر


برسم المنحنى الممثل في الشكل -2.

- أ) بر هن أن المماس للمنتنى البياني عند اللحظة t=0 يقطع محور الأزمنة في النقطة ذات الفاصلة $t'=\tau/2$ ثم استنتج قيمة ثابت الزمن τ للدارة.
- ب) اعتمادا على بيان الشكل -3، أحسب شدة العظمى للتيار المار في الدارة.
 - ج) استنتج قيمة كل من مقاومة الوسيعة r وذاتيتها L
 - 6) أثبت أن زمن تناقض الاستطاعة الأعظمية المصروفة في الناقل

الأومي R إلى النصف هو: $1 \ln 2 = \frac{\tau}{2}$ ، ثم أوجد قيمته.

 $P(t) = R.i^2(t)$ تذکیر:

التمرين الرابع (4 نقاط)

 $Ke = 10^{-14}$:حميع المحاليل مأخوذة عند الدرجة $^{\circ}$ C حيث

نعاير على التوالي حجما V_1 =30mL لمحلول حمض كلور الهيدروجين ذي التركيز المولي $^{\circ}$ ، ثم حجما V_2 =20ml نعاير على التوال حمض الميثانويك HCOOH تركيزه المولي $^{\circ}$ ، بواسطة محلول هيدروكسيد الصوديوم $^{\circ}$ $^{\circ}$ المولي HCOOH تركيزه المولي المولي

 $c_b = 0,1mol/L$

نتابع تطور pH الوسط التفاعلي بواسطة جهاز الــ pH متر بدلالة حجم الأساس المضاف V_b من السحاحة، فتحصلنا على البيانين (1) و (2) الممثلين في الشكل -1

- 1) ضع بروتوكولا تجريبيا للمعايرة باستعمال رسم تخطيطي.
 - 2) أكتب معادلة تفاعل المعايرة لكل حمض
- 3) حدد إحداثيات نقطة التكافؤ لكل منحنى ثم انسب كل منحنى للحمض الموافق له مع التعليل
 - C_2 و C_1 استنتج قيمة كل من

	2)	
/	(a)	

()	HCOOH,	/HCOO-	للثنائية (pKa ²	حموضة	د ثابت ا	<u>5) حد</u>
----	--------	--------	------------	------------------	-------	----------	--------------

- 6) أحسب ثابت التوازن K لتفاعل معايرة حمض الميثانويك. ماذا نستنتج؟
- 7) نريد استعمال كاشفا ملونا في كل معايرة، ماهو الكاشف المناسب لكل معايرة من بين الكواشف التالية؟

الكاشف الملون	مجال التغير اللوني
الهليانتين	3,1-4,4
أزرق البروموتيمول	6,2-7,6
فينول فتاليين	8,0-10,0

التمرين الخامس 4 نقاط

1. تمثّل الجملة المبيّنة في الشكل -1 جسما صلبا (S_1) كتلته m_1 =400g ينزلق بدون احتكاك على سطح مستو مائل عن الأفق بزاوية m_2 =400g ويرتبط بواسطة خيط مهمل الكتلة وعديم الامتطاط ويمر على محز بكرة مهملة الكتلة بجسم صلب (S_2) كتلته m_2 =400g. نترك الجملة عند اللحظة t=0 فينطلق الجسم (S_1) من النقطة S_1 بدون سرعة ابتدائية

أ. مثّل القوى الخارجية المؤثرة على كل من (S₁) و (S₂)

ب. بتطبيق القانون الثاني لنيوتن حدد طبيعة حركة الجسم (S_1) ثم أحسب قيمة تسارع مركز عطالته.

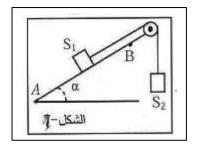
AB=1,25m أنّ: B عند النقطة B علما أنّ:

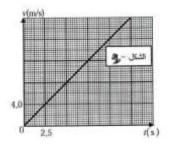
ثم استنتج المدة المستغرقة لذلك.

2. مكنت الدراسة التجريبية من ريم منحنى تغيرات سرعة الجسم (S_1) بدلالة الزمن v=f(t)

أ. من هذا المنحنى، جد قيمة تسارع الجسم (S1) وقارنها مع المحسوبة سابقا.

ب. فسر اختلاف قيمة التسارع في الحالتين


ج. بناء على هذا التفسير بيّن أن سرعة الجسم (S1) تحقق المعادلة التفاضلية


التالية: $\frac{dv(t)}{dt} = \frac{g}{2}(1-\sin\alpha) - \frac{f}{2m_1}$ عيث $\frac{dv(t)}{dt} = \frac{g}{2}(1-\sin\alpha)$

المستوي المائل على (S_1)

 $\stackrel{
ightarrow}{T}$ و شدة تو تر الخبط أو ألحتكاك الخبط أو شدة تو تر الخبط أو الخبط أو الخبط أو الخبط الخبط الخبط أو الم

 $g = 10m.s^{-2}$ يعطي:

تصحيح الاختبار

1

0,75

 $\mathsf{H}_2\mathsf{C}_2\mathsf{O}_{4(\mathsf{ag})} + \mathsf{Cr}_2\mathsf{O}_7^{2^-}{}_{(\mathsf{ag})} + 8\mathsf{H}^+{}_{(\mathsf{ag})} = 6\mathsf{CO}_{2(\mathsf{g})} + 2\mathsf{Crr}^{3^+}{}_{(\mathsf{ag})} + 7\mathsf{H}_2\mathsf{O}_{(1)}$ المعادلة الحالة كمية المادة بالمول التقدم الابتدائية x=00 n_{01} n_{02} الانتقالية n_{01} – 3x N_{02} -x 6x 2xΧ بوفرة بوفرة n $_{02}$ -x $_{max}$ النهائية n_{01} – $3x_{max}$ $2x_{\text{max}}$ $6x_{max}$ \mathbf{X}_{max}

$$x_{\text{max}} = \frac{c_1 v_1}{3} = \frac{12 \times 10^{-3} \times 50 \times 10^{-3}}{3} = 2 \times 10^{-4} \text{mol}$$
 : $x_{\text{max}} = 8 \cdot 10^{-4} \text{mol}$ $x_{\text{max}} = 8 \cdot 10^{-4} \text{mol}$ $x_{\text{max}} = c_2 v_2 = 16 \times 10^{-3} \times 50 \times 10^{-3}$ $x_{\text{max}} = c_2 v_2 = 16 \times 10^{-3} \times 50 \times 10^{-3}$

 $x_{\text{max}} = 2 \times 10^{-4} mol$: ومنه المتفاعل المحد هو $H_2 C_2 O_4$

2- أ- السرعة الحجمية : -2

 $V_{VOL} = \frac{1}{V} \frac{dx}{dt}$. وحدة الحجوم في وحدة التفاعل في وحدة التفاعل عريف

 $=n_{01}$ - 3x $n_{H_1C_2O_4}$: الدينا من جدول التقدم $v=-rac{1}{3} imesrac{d[H_2\ C_2\ O_A]}{dt}$: ب- إثبات أن

ومنه
$$\frac{1}{20,8} = -\frac{1}{3} \times \frac{d[H_2C_2O_A]}{20,8-0}$$
 ومنه $\frac{dx}{dt} = \frac{-V}{3} \times \frac{d[H_2C_2O_A]}{dt}$

و.25
$$v_{12\,\text{min}} = -\frac{1}{3} \times \frac{(0-3,1) \times 10^{-3}}{20,8-0} = 5,0 \times 10^{-5} \left(\frac{mol}{L.\text{min}} \right) :$$
 جب حساب قیمتها

$$-3\left[H_{2}C_{2}O_{4}\right]_{4/2} = \frac{C_{1}V_{1}}{V} - \frac{3\frac{x_{\max}}{2}}{3} = \frac{12\times10^{-3}\times50\times10^{-3}}{0,1} - \frac{3\times2\times10^{-4}}{0,2} = 3\times10^{-3} mol/1$$

تعريف زمن نصف التفاعل: هو الزمن اللازم لبلوغ التفاعل نصف تقدمه النهائي

0,25 $t_{1/2} = 5,6 \,\text{min}$: $t_{1/2} = 5,6 \,\text{min}$

```
التمرين الثاني
```

 $^{239}_{94}Pu+^{1}_{0}n
ightarrow ^{135}_{53}I+^{102}_{41}Nb+a^{1}_{0}n$: كتابة معادلة التفاعل عيين العدد a : بتطبيق قانون انحفاظ العدد الكتلى :

 $\sum A_1 = \sum A_2 \Rightarrow 239 + 1 = 153 + 102 + a \Rightarrow a = 3$

2تفسير العبارة:

تفاعل تسلسلي مغذى ذاتيا: تفاعل انشطار نووي مغذى ذاتيا لأن النترونات الثلاث الناتجة عن لإنشطار الأول تحدث 3 انشطارات في مرحلة ثانية وتنتج ثالثة ب 9 انشطارات وهكذا....

 $^{239}_{04} Pu$ نقص الكتلة لنواة البلوتونيوم: $\Delta m_{-1} - 1$

 $^{135}_{53}I, ^{102}_{41}Nb$ مجموع نقص الكتلة لنواتى Δm_{-2}

نقص الكتلة لتفاعل الانشطار : Δm_2

 $\frac{239}{94}Pu$ إيجاد طاقة الربط لنواة -4

 $E_1\left({}^{239}_{94}Pu\right) = \Delta m_1.931, 5 = (2,4195-2,4001).10^2.931, 5 = 1807, MeV$

 $E_{lib} = |\Delta m_3|.931, 5 = |(2,4195-2,4001)|.931, 5 = 186, Mev: E_{lib}$ نطاقة المحررة

 $E_1 = \binom{135}{53}I$ $= \Delta m \left| \binom{135}{53}I \right| .931,5 : \binom{135}{53}I$ جـ حساب طاقة الربط لنواة اليود

 $|\Delta m| \binom{135}{53} I \Delta m_2 - \Delta m \binom{102}{41} Nb = |2,4195| \cdot 10^2 - 0,93119 = 1,2088 Iu$ $E_1\left(\begin{smallmatrix} 135\\ 53 \end{smallmatrix}\right) = 1,20881 \times 931,5 = 1126,00 MeV$

 $^{135}_{53}I, ^{102}_{41}Nb$ لمقارنة بين استقرار

 $\frac{E_1\left(\frac{135}{53}I\right)}{\Delta} = \frac{1126,00}{135} = 8,34 Mev / nuc$

 $\frac{E_1\left(\frac{102}{41}Nb\right)}{A} = \frac{0.93119 \times 931.5}{102} = 8.50 Mev / nuc$

 $\cdot \,\,_{53}^{135}I$ ومنه نواة $_{41}^{102}Nb$ ومنه نواة $_{41}^{102}Nb$ ومنه نواة $_{41}^{135}I$ ومنه نواة $_{41}^{135}I$

2- حساب الطاقة الكهربائية التي ينتجها المفاعل النووي عند استهلاك 1kg من البلوتونيوم 239:

 $p = \frac{E_e}{E'_{...}} \times 100 \Rightarrow E_e = \frac{p \times E'_{lib}}{100} = \frac{p \times E_{lib} \times N}{100} = \frac{p \times E_{lib} \times m \times N_A}{100M}$

 $E_e = \frac{30 \times 186, 3 \times 10^3 \times 6, 02 \times 10^{23}}{100 \times 239} = 1,41.10^{26} Mev = 2,25.10^{13} J$

0,5

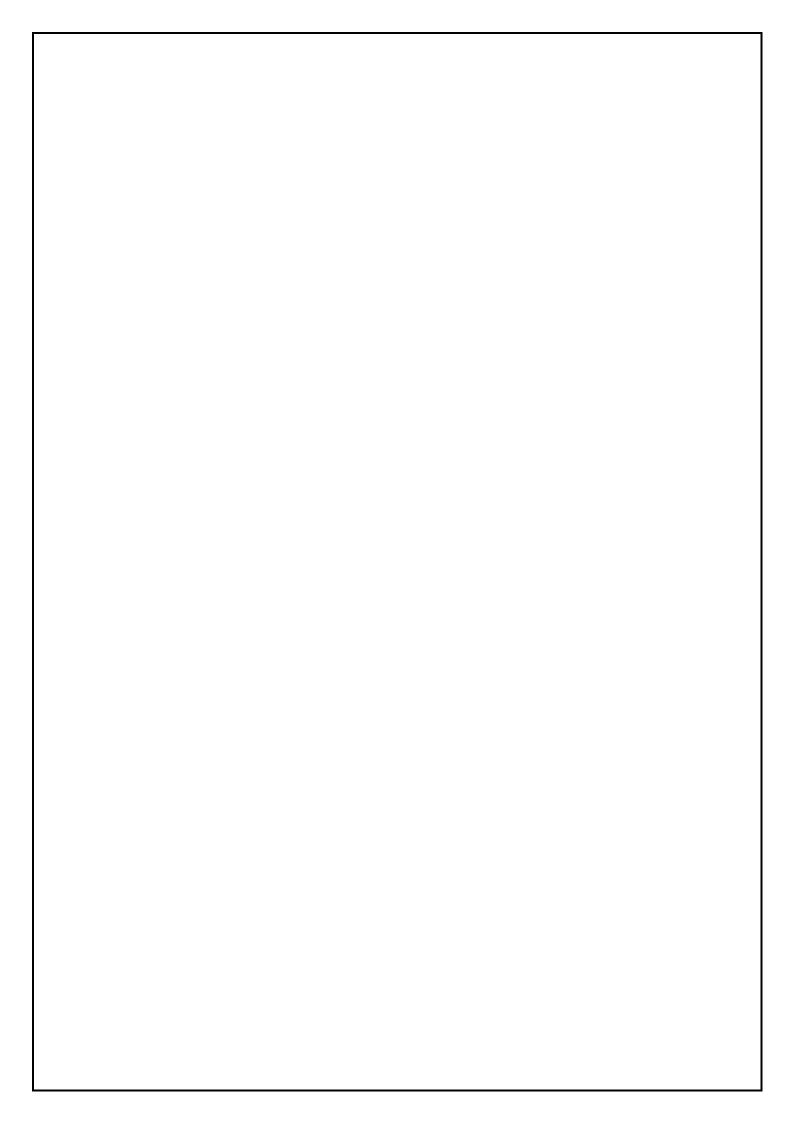
0,25x2

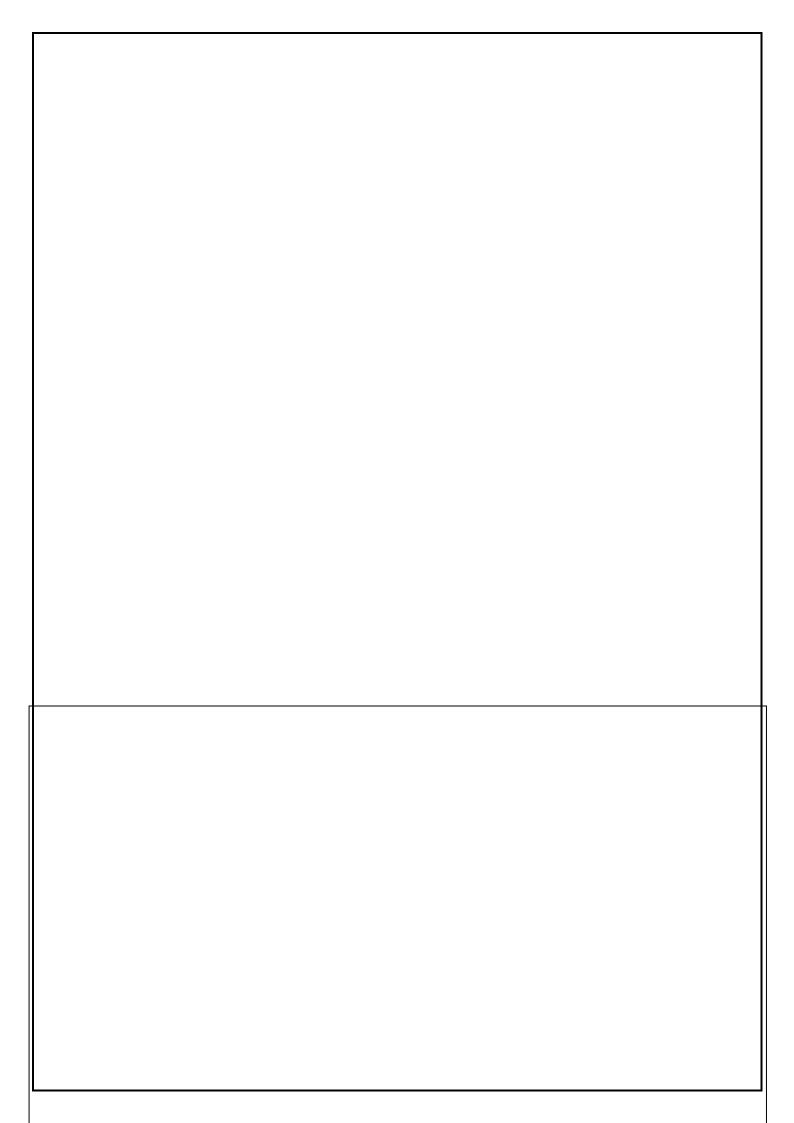
0,25x3

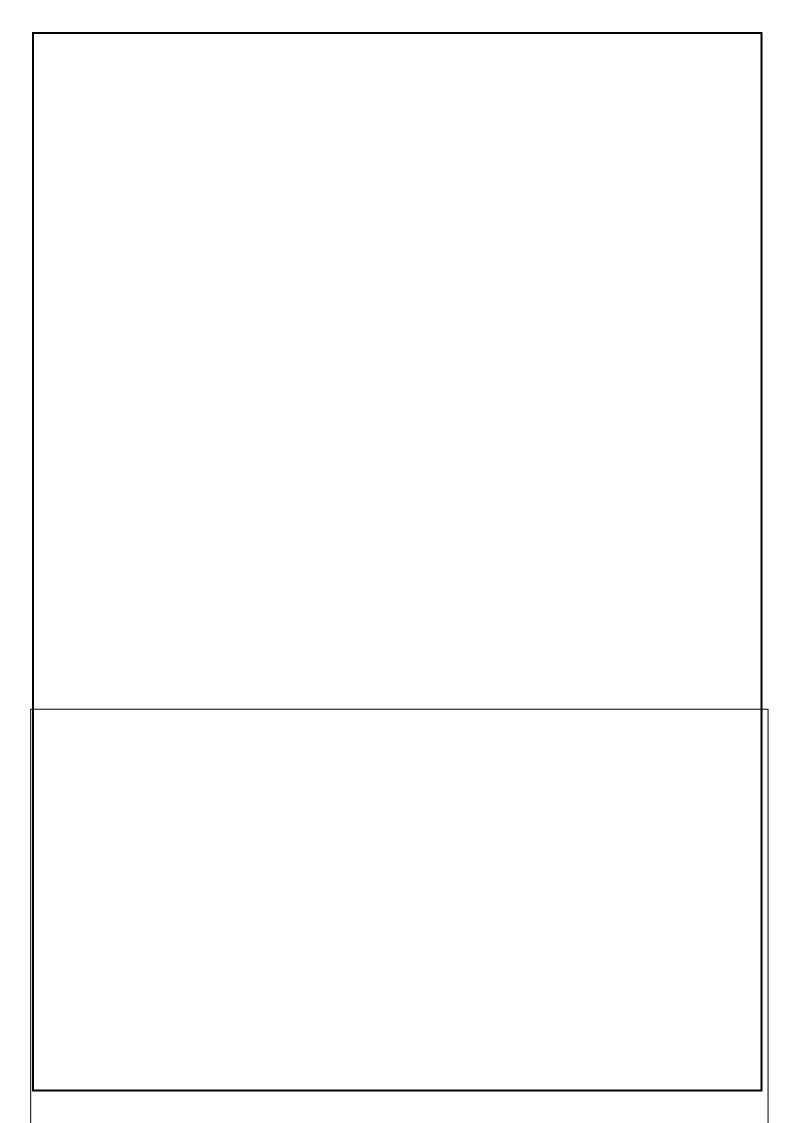
0,5

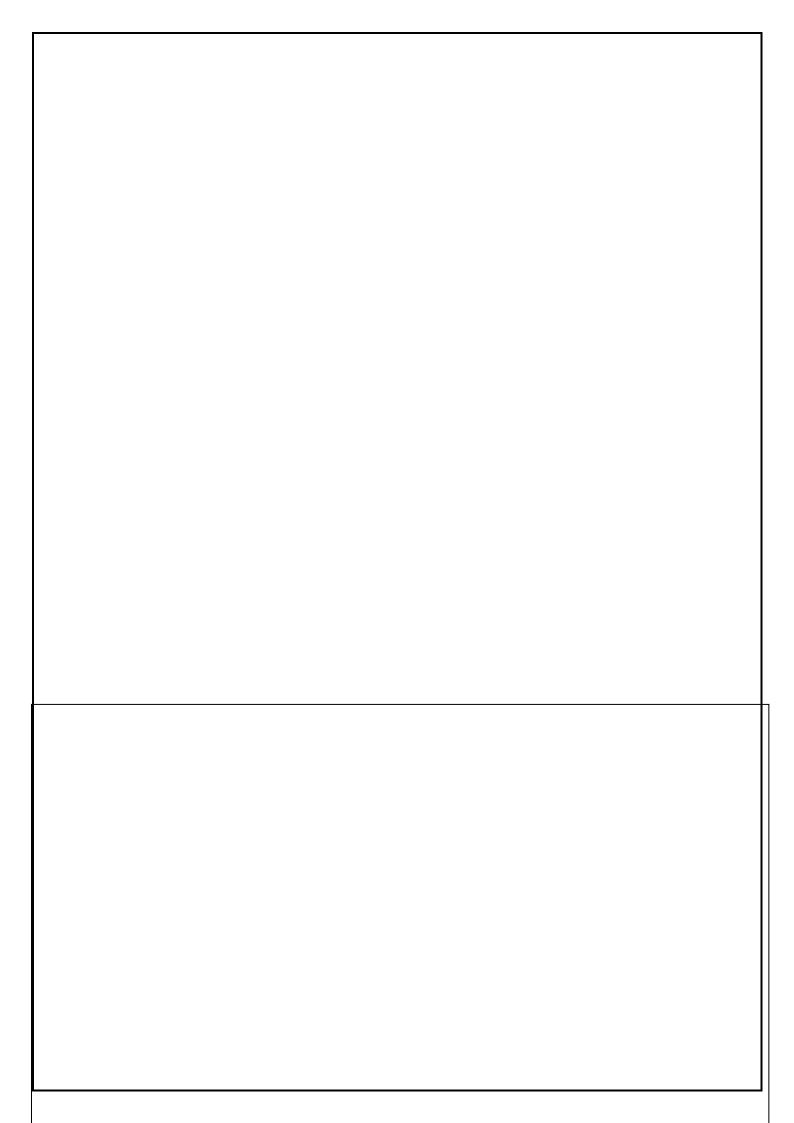
0,5

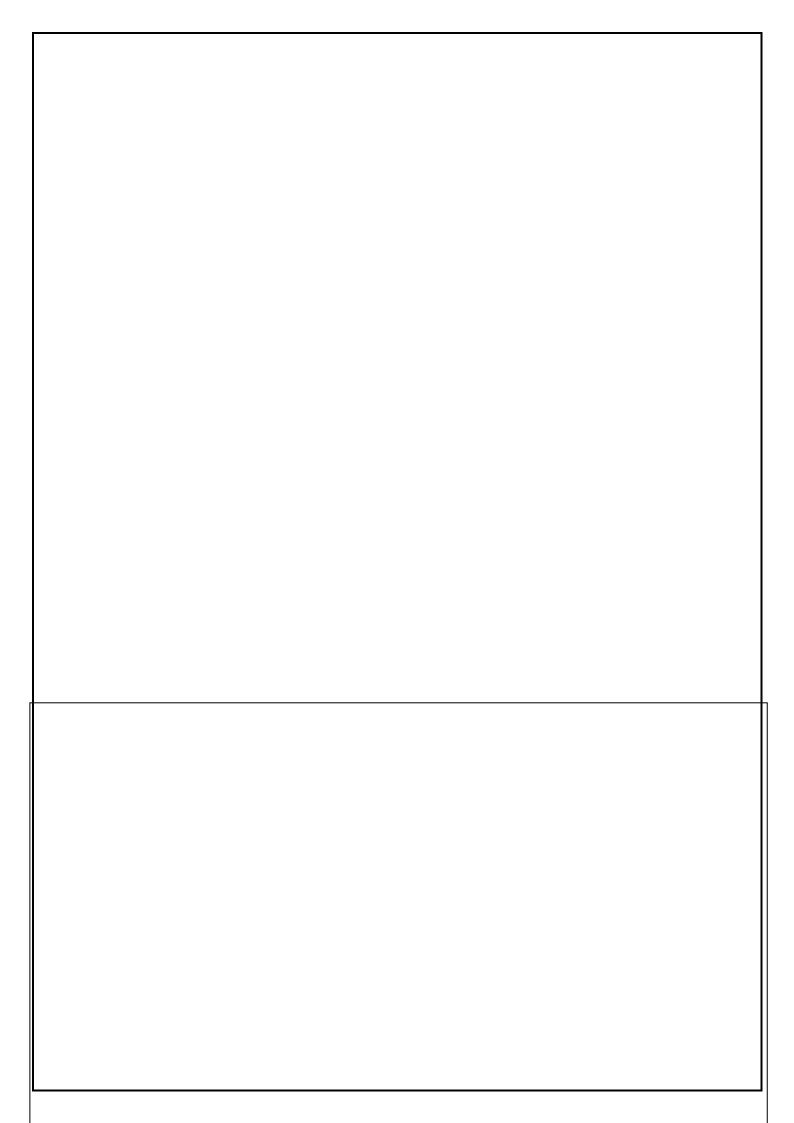
0,25x2


0,75


0,25	التمرين الثالث الظاهرة الفيزيائية
	1) المعادلة التفاضلية : حسب قانون جمع التوترات :
	$U_R + U_b = 0$
	$U_R + L\frac{di}{dt} + ri = 0$
	$U_R + \frac{L}{R} \frac{dU_R}{dt} + \frac{r}{R} U_R = 0$
1	$\frac{dU_R}{dt} + \frac{R+r}{L}U_R = 0$
	dt L $^{\kappa}$
	2) إيجاد عبارة A و a :
	$rac{dU_R}{dt}=rac{-A}{lpha}.e^{rac{-1}{a}}$ الحل هو $U_R(t)=A.e^{rac{-1}{a}}$ الحل هو
0,25x2	$a=rac{L}{R+r}= au$ بالتعويض في المعادلة التفاضلية نجد
	$U_R(t)=RI_0.e^{rac{-1}{r}}$ ومن الشروط الابتدائية نجد $A=RI_0$ \Rightarrow $A=RI_0$ ومن الشروط الابتدائية نجد
0,25x2	$i(t)=rac{U_R(t)}{R}=I_0.e^{rac{-1}{r}}$ ایجاد عبارة $\mathbf{i(t)}$: i(t) ایجاد عبارة
0,5	$P(t) = R.i(t)^2 = R.\left(I_0.e^{rac{-1}{r}} ight)^2 = R.I_0^{-2}.e^{rac{-2r}{r}} = P_{ ext{max}}.e^{rac{-2r}{r}}$: عبارة الاستطاعة (3
	4) أ- برهان المماس: لدينا معامل توجيه المماس
	$a = \left(\frac{dP(t)}{dt}\right)_{t=0} = \left(\frac{-2P_{\text{max}}}{\tau} e^{\frac{-1}{r}}\right)_{t=0} = \frac{-2P_{\text{max}}}{\tau} e^{\frac{-2r}{r}} \dots (1)$
	ولدينا معامل توجيه المماس بيانيا. (2) والدينا معامل والمام يوجيه المماس بيانيا. (2) والدينا معامل والمام والم وال
0,5	$\frac{-P_{\text{max}}}{t'} = \frac{-2P_{\text{max}}}{\tau} . \Rightarrow t' = \frac{\tau}{2}$
0,25	$rac{ au}{2}=5ms\Rightarrow au=10ms$ استنتاج ثابت الزمن : من البيان نجد –
	$P_{ m max}=R.{I_0}^2ms$ \Rightarrow $I_0=\sqrt{rac{P_{ m max}}{R}}$: ب $-$ شدة التيار الأعظمي $=$ الم
0,5	$I_0 = \sqrt{\frac{50 \times 10^{-2}}{50}} = 0, IA$
	: L و r ایجاد ت ت ت
	$I_0 = \frac{E}{R+r} \Longrightarrow r = \frac{E}{I_0} - R$
0,25	$r = \frac{6}{0.1} - 50 = 10\Omega$: \mathbf{r} ایجاد
	$rac{L}{R+r}=r \Rightarrow L=r(R+r) \Rightarrow L=0,01(60)=0,6H$: ایجاد -


	5) الاستطاعة إلى النصف: لدينا:
1	$t = t_{\frac{1}{2}} \Rightarrow \begin{cases} \frac{P(t_{1/2}) = \frac{P_{\max}}{2}}{2} \Rightarrow P_{\max} e^{-\frac{2t_{\frac{1}{2}}}{2}} \end{cases} \Rightarrow P_{\max} e^{-\frac{2t_{\frac{1}{2}}}{2}} = \frac{P_{\max}}{2}$
	$\Rightarrow e^{\frac{-2t_{\frac{1}{2}}/\tau}{2}} = \frac{1}{2} \Rightarrow t_{\frac{1}{2}} = \frac{\tau}{2} Ln2 = 3.46mS$
	التمرين الرابع
	التمرين التجريبي: (06 نقاط):
0,25	1) البروتوكول التجريبي:
	معادلة تفاعل المعايرة لكل حمض :
0,5	$H_3O^+ + OH^- = 2H_2O$
	$HCOOH + OH^- = HCOO^- + H_2O$
	3) احداثیات نقطة التکافؤ لکل منحنی:
0,25x2	$E(V_{bE}; pH_E) = (20ml; 7) : (1)$ المنحنى
4	$E(V_{bE}; pH_E) = (20ml; 8, 2) : (2)$ المنحنى
	$pH_E = 7$ المنحنى (1) يوافق معايرة محلول حمض الهيدروجين لأن
	المنحنى (2) يوافق معايرة محلول حمض الميثانوليك لأن 7 <ph<sub>E >7</ph<sub>
	4) استنتاج التركيز المولي لكل محلول حمضي:
0,5x2	$C_1 V_1 = C_b V_{bE} \Rightarrow C_1 = \frac{C_b V_{bE}}{V_1} = \frac{0.1 \times 20}{30} = 6,6.10^{-2} mol / L$
	$C_2V_2 = C_b V_{bE} \Rightarrow C_2 = \frac{C_bV_{bE}}{V_2} = \frac{0.1 \times 20}{30} = .10^{-1} mol / L$
0,25	5) استنتاج ثابت الحموضة :
	عند نقطة نصف التكافؤ يكون pKa=3,8
	6) حساب ثابت التوازن K لتفاعل معايرة حمض الميثانويك:
0 25	$K = \frac{\left[HCOO^{-}\right]_{f}}{\left[HCOOH\right]_{f}\left[OH^{-}\right]_{f}} \times \frac{\left[H_{3}O^{+}\right]_{f}}{\left[H_{3}O^{+}\right]_{f}} = \frac{Ka}{Ke} = 10^{pKe-pKa} = 1,58 \times 10^{10}$
	. التفاعل تام $K \square 10^4$ التفاعل تام $K \square 10^4$ التفاعل تام
	7) الكاشف المناسب لكل معايرة هو :
	معايرة حمض كلور الهيدروجين : BBT لأن pH _E =7 ينتمي إلى مجال تغيره اللوني
0,25	8) معايرة حمض الميثانويك : فينول فتالين لأن pH _E =8,2 ينتمي إلى مجال تغيره اللوني .


	(200 4) . William (200)
A =	$= \frac{1}{R}$: القوى الخارجية:
0 ,5	ب- تحدید طبیعة حرکة الجسم S ₁
	- الجملة S ₁ و S ₂ : المعلم سطحي أرضي عطالي
	$\sum \vec{F}_{axt} = m \ \alpha_G$
	$S_1: \overrightarrow{P}_1 + \overrightarrow{T}_1 + \overrightarrow{R} = m_1 \ \overrightarrow{\alpha}$
	$S_2: \overrightarrow{P_2} + \overrightarrow{T}_2 + \overrightarrow{R} = m_2 \overrightarrow{\alpha}$
	بالإسقاط على محور الحركة . $S_1:\ m_1\ g\sin a + T_1 = m_1\ a$
	S_2 : $/T_1 = T_2$ $m_2 g - T_2 = m_2 a$
	بالجمع نجد:
0,5x2	$m_2 g - m_1 g \sin a = (m_1 + m_2)a$ $m_1 = m_2 = m$
	$mg(1-\sin a) = 2ma \Rightarrow a = \frac{g}{2}(1-\sin a) = C^{te}$
	إذن حركة الجسم S_1 مستقيمة متغيرة بانتظام.
	$a = \frac{10}{2}(1 - \sin 30^\circ) = 2.5m/s^2$: a حساب قیمة –
	ج - سرعة الجسم S1 عند الموضع B:
0,25x2	$v_B^2 - v_A^2 = 2a.AB \Rightarrow v_B = \sqrt{2a.AB} = \sqrt{2 \times 2.5 \times 1.25} = 2.5m/s$
	- مدة الحركة من النقطة A إلى النقطة B:
	$x = \frac{1}{2}at^2 + v_0t + x_0$ $t = 0 \rightarrow v_0 = v_A = 0$; $x_0 = 0$
	$x = \frac{1}{2}at^2 \Rightarrow AB = \frac{1}{2}at^2 \Rightarrow t = \sqrt{\frac{2AB}{a}} = \sqrt{\frac{2 \times 1, 25}{2, 5}} = 2s$
0,25	$a_1 = \frac{\Delta v}{\Delta t} = \frac{4,0-0}{2,5-0} = 1,6m/s^2$: التسارع بيانيا = -أ/2
	$a_{\scriptscriptstyle 1}\!\prec\!a$: نلاحظ أن $a_{\scriptscriptstyle 1}\!\prec\!a$
	\overrightarrow{f} . \overrightarrow{f} . وجود قوة احتكاك \overrightarrow{f}
0.25	\overline{R} : المعادلة التفاضلية :
0,25	$S_1: \overrightarrow{P_1} + \overrightarrow{T_1} + \overrightarrow{R} + \overrightarrow{F} = m_1 \overrightarrow{a_1}$
	$ \int_{1}^{T_{1}} \int_{S_{1}}^{S_{2}} \operatorname{S}_{2} : \overrightarrow{P_{2}} + \overrightarrow{T_{2}} + \overrightarrow{R} + \overrightarrow{F} = m_{2} \overrightarrow{a_{2}} $
	$S_1: m_1 g \sin a - f + T_1 = m_1 a_1$
	S ₂ : $m_2g - t_2$ / $T_1 = T_2$ = m_2a_1
	$m_1 g(1 - \sin a) - f = 2m_1 a_1$ $f dv g f$
0 5	$a = \frac{g}{2}(1-\sin a) - \frac{f}{2m_1} \Rightarrow \frac{dv}{dt} = \frac{g}{2}(1-\sin a) - \frac{f}{2m_1}$
	$(\vec{n}$ کل من $\vec{T}: \vec{T}: \vec{T}$ د \vec{T} کل من الطرق الصحيحة
	$a_1 = a \frac{f}{2m} \Rightarrow f = 2m_1(a - a_1)$
0,25x2	$f = 2 \times 0, 4(2,5) - 1, 6) = 0,72N$
<u> </u>	$m_1g - T_2 = m_1a_1 \Rightarrow T_2 = m_1(g - a_1) = 0,4(10 - 1,6) = 3,36N$ ولاينا


التمرين الخامس : (4 نقاط)

