

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

مؤسسة التربية و التعليم الخاصة سليم

www.ets-salim.com a 021 87 10 51 📠 021 87 16 89 🕈 Hai Galloul - bordj el-bahri alger

رخصة فتح رقم 1088 بتاريخ 30 جانفي 2011

إعتماد رقم 67 بتاريخ 06 سبتمبر 2010 🛮 فضيري- ابتدائي- متوسط - ثانوي

يسمبر 2018	المستوى: الثالثة ثانوي(علوم تجريبية) 3ASS د
المدة: 03سا00	امتحان الفصل الأول في مادة الرياضيات

التمرين الأول (05ن):

اجب بصحيح أو خطا مع تعليل الإجابة:

$$\lim_{x \to 0} f(x) = 3$$
 فإن $f(x) = \frac{e^{4x} - e^x}{x}$ بذا كانت $f(x) = \frac{e^{4x} - e^x}{x}$ بذا كانت $f(x) = 3$

المعادلة
$$e^{2x} + 3e^{x} + 2 = 0$$
 المعادلة (2

$$\ln(1+x^3)^2 = 2\ln(1+x^3)$$
 من اجل کل عدد حقیقی x یکون (3

$$\frac{1}{6}$$
 (2 $\frac{2}{3}$ (1 : هي 2 عند $f(x) = \frac{\sqrt{x+7}-3}{x^2-4}$: المعرفة بـ: (4

$$\frac{1}{24}$$
 (3)

$$[-5;1]$$
 (3 $]-\infty;-5]$ $\cup [1;+\infty[$ (2 $]-\infty;-5]$ (1 هي IR هي $e^{5-4x} \le e^{x^2}$ معلول المتراجحة (5 e^{5-4x}

التمرين الثاني (08ن):

$$f(x) = -x + 1 + \frac{1}{e^{2x} - 1}$$
: ب IR^* على f

احسب
$$\lim_{x\to \infty} f\left(x\right)$$
 و $\lim_{x\to \infty} f\left(x\right)$ تم بین أن $\lim_{x\to \infty} f\left(x\right)$ معادلة مستقیم مقارب موازي لمحور التراتیب (1

$$(\Delta)$$
 تحقق أن (C_f) يقبل مستقيمين مقاربين مائلين $(x) = -x + \frac{e^{2x}}{e^{2x} - 1}$ تحقق أن (2)

$$y=-x+1$$
 و $y=-x$ الترتيب: معادلتهما على الترتيب

(3) أدرس اتجاه تغير الدالة f ثم شكل جدول تغيراتها.

الصفحة 2/1

حى قعلول -برج البحري- الجزائر

- بين أن $W\left(0;\frac{1}{2}\right)$ مركز تناظر للمنحنى $W\left(0;\frac{1}{2}\right)$ و أن المنحنى $W\left(0;\frac{1}{2}\right)$ يقطع حامل محور الفواصل في النقطة ذات الفاصلة α حيث: α حيث: α
 - (Δ') و (Δ) و (C_f) عن کل من (5)
 - $(1-m)(e^{2x}-1)+1=0$: ناقش بیانیا و حسب قیم الوسیط m عدد و إشارة حلول المعادلة (6

التمرين الثالث(07ن):

نعتبر الدالة f المعرفة على المجال g المجال g : g المجال g : g عددان حقيقيان g : g عددان حقيقيان g :

- عين العددين الحقيقين b;a بحيث المنحنى (C_f) يقبل عند النقطة b;a مماسا موازيا لحامل محور الفواصل
 - a = b = 1نضع (2

احسب $\lim_{x\to +\infty} f(x)$ و $\lim_{x\to +\infty} f(x)$ ثم فسر النتيجتين هندسيا

- ادرس اتجاه تغیر الداله f ثم شکل جدول تغیراتها (3
- $0.23 \prec \alpha \prec 0.24$: بين أن المعادلة f(x) = 0 تقبل حلا وحيدا α
- y=2 it is a line y=2 it is y=2.
 - (C_f) و (D) و (D)

بالتوفيق

الصفحة 2/2

التصحيح النموذجي 3ASS

التمرين الاول:

اجب بصحيح او خطا مع تعليل الاجابة:

$$\lim_{x\to 0} f(x) = 3$$
 فان $\int f(x) = \frac{e^{4x} - e^x}{x}$ ب IR^* معرفة على f

المعادلة و
$$e^{2x} + 3e^x + 2 = 0$$
 المعادلة (2

$$\ln(1+x^3)^2 = 2\ln(1+x^3)$$
 من اجل کل عدد حقیقی x یکون (3

$$\frac{1}{24}$$
 (3: هي $f(x) = \frac{\sqrt{x+7}-3}{x^2-4}$ نهاية الدالة (4

هي IR في
$$e^{5-4x} \le e^{x^2}$$
 هي (5

$$[-5;1]$$
 (3 $]-\infty;-5] \cup [1;+\infty[$ (2 $]-\infty;-5]$ (1:

التمرين الثاني:

$$f(x) = -x + 1 + \frac{1}{e^{2x} - 1}$$
: ب IR^* على f

$$\lim_{x \to -\infty} f(x) = +\infty \quad \lim_{x \to +\infty} f(x) = -\infty \quad (1)$$

لدينا $\infty = 0$ ادن 0 = 1 ادن 0 = 1 ادن $0 = +\infty$ التراتيب

$$(\Delta)$$
 نحقق ان $f(x) = -x + \frac{e^{2x}}{e^{2x} - 1}$ نحقق ان $f(x) = -x + \frac{e^{2x}}{e^{2x} - 1}$ نحقق ان $f(x) = -x + \frac{e^{2x}}{e^{2x} - 1}$

$$\lim_{x \to -\infty} f(x) - y = \lim_{x \to -\infty} \frac{e^{2x}}{e^{2x} - 1} = 0 \quad : y = -x + 1 \quad y = -x \quad \text{(Δ')}$$

$$\lim_{x \to +\infty} f(x) - y = \lim_{x \to +\infty} \frac{1}{e^x - 1} = 0$$

ادرس اتجاه تغیر الدالة f ثم شکل جدول تغیراتها (3

مركز تناظر للمنحنى
$$(C_f)$$
 و ان المنحنى (C_f) يقطع حامل محور الفواصل في النقطة $W\left(0;\frac{1}{2}\right)$

 $1 \prec \alpha \prec 1,2$ دات الفاصلة α

$$(\Delta')$$
 و (Δ) و (C_f) عنشئ کل من (5

$$(1-m)(e^x-1)+1=0$$
: ناقش بیانیا و حسب قیم الوسیط معدد و اشارة حلول المعادلة (6

$$f(x) = -x + m$$
 و منه

التمرين الثالث:

نعتبر الدالة f المعرفة على المجال g : g = g = g = g = g عددان g =

- ايجاد العددين الحقيقين a=b=1 بحيث المنحنى a=b=1 و منه a=b=1 و منه a=b=1 و منه a=b=1
 - a = b = 1نضع (2

x=0 مستقیم مقارب موازي لمحور التراتیب معادلته $\lim_{x \to 0} f(x) = -\infty$

y=2 مستقیم مقارب موازي لمحورالفواصل معادلته $\lim_{x\to +\infty} f(x)=2$

- ادرس اتجاه تغیر الداله f ثم شکل جدول تغیراتها (3
- $0,23 \prec \alpha \prec 0,24$: بين ان المعادلة f(x)=0 تقبل حلا وحيدا (4
- y=2 ادرس الوضع النسبي للمنحنى C_f و المستقيم $f(x)-y=\frac{1+\ln(x)}{x}$: لدينا
 - $(C_{\scriptscriptstyle f})$ و (D) فنشئ كل من (6