# الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

الدورة الاستثنائية: 2017



وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

اختبار في مادة: الرياضيات المدة: 03 سا و 30 د

# على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

# التمرين الأول: (04 نقاط)

نعتبر المتتاليتين  $(u_n)$  و  $(v_n)$  المعرفتين على مجموعة الأعداد الطبيعية  $\mathbb N$  كما يلى:

$$\begin{cases}
v_0 = 6 \\
v_{n+1} = \frac{3}{4}v_n + 1
\end{cases} \qquad
\begin{cases}
u_0 = 1 \\
u_{n+1} = \frac{3}{4}u_n + 1
\end{cases}$$

- $v_1$  و  $v_1$  احسب الحدّين: الحدّين (1
- $u_{n+1} u_n$  بدلالة  $u_{n+2} u_{n+1}$  بكتب (أ (2
- باستعمال البرهان بالتراجع برهن أنّ المتتالية  $(u_n)$  متزايدة تماما والمتتالية  $(v_n)$  متناقصة تماما.
  - $w_n = u_n v_n$ : نعتبر المتتالية  $(w_n)$  المعرفة على المعرفة (3

n برهن أنّ المتتالية  $(w_n)$  هندسية يطلب تعيين أساسها q و حدّها الأوّل  $w_n$  ثم عبّر عن  $w_n$  بدلالة

بيّن أنّ المتتاليتين  $(u_n)$  و  $(v_n)$  متجاورتان.

## التمرين الثانى: (04 نقاط)

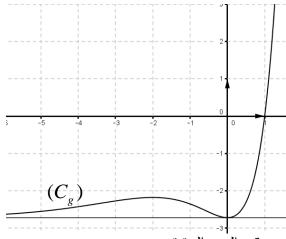
C(4;-4;-2) B(2;-1;-1) ، A(1;1;-1) نعتبر النقط  $(O;\vec{i},\vec{j},\vec{k})$  و B(2;-1;-1) ، A(1;1;-1) نعتبر النقط (P) نا المعادلة الديكارتية x-2y+2z-3=0 :

- بيّن أنّ النقط A ، B و C تعيّن مستويا. (1
- . بيّن أنّ المستويين (P) و (ABC) غير متوازيين (2

$$x=-2+lpha-3eta$$
 .  $(ABC)$  يحقق أنّ الجملة  $x=-2+lpha-3eta$   $y=6-2lpha+5eta$  ;  $(lpha\in\mathbb{R},eta\in\mathbb{R})$  : تحقق أنّ الجملة  $z=eta$ 

(ABC) و (P) جد تمثیلا وسیطیا لے  $(\Delta)$  مستقیم تقاطع المستویین

#### التمرين الثالث: (05 نقاط)


 $(z-2)(z^2+2z+4)=0$  : z المعادلة ذات المجهول (z-2) المعادلة المركبة (z-2) المعادلة ذات المجهول

.  $\parallel \vec{u} \parallel = 2cm$ : حيث ( $O; \vec{u}, \vec{v}$ ) المستوي المركب منسوب إلى المعلم المتعامد المتعامد المتعامد (II

#### اختبار في مادة: الرياضيات / الشعبة: علوم تجريبية / بكالوريا استثنائية 2017

 $\left(z_{B}\right)$  التكن النقط  $z_{C}=\overline{z}_{B}$  و  $z_{C}=\overline{z}_{B}$  هو مرافق  $z_{A}=1+i\sqrt{3}$  ،  $z_{A}=2$  هو مرافق  $z_{B}$ 

- .  $z_C$  على الشكل الأسّي ثمّ استنتج الشكل الأسّي للعدد المركب  $z_B$  أ) اكتب العدد المركب (1
- C و B ، A النقط ABC عين مركز ونصف قطر الدائرة المحيطة بالمثلث
  - $\frac{2\pi}{3}$  وزاويته  $\frac{1}{2}$  وزاويته O التشابه المباشر الذي مركزه النقطة O ونسبته (2
- أ) اكتب العبارة المركبة للتشابه S ثم عين لاحقة كل من B' ، A' و C' صور النقط S و B على الترتيب بالتشابه S ثم أنشئ في المعلم السابق النقط S' ، S' و S'
  - ب) احسب بالسنتمتر المربع مساحة المثلث 'A'B'C.



## التمرين الرابع: (07 نقاط)

- $g(x) = x^2 e^x e$  ب ب المعرفة على g المعرفة على (I
- تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد  $\left(C_{g}
  ight)$ 
  - المتجانس  $\left(O; \vec{i}, \vec{j}
    ight)$  ( كما هو في الشكل المقابل ).
    - g(1) -
- . بقراءة بيانية عيّن إشارة g(x) ثم استنتج إشارة g(-x) حسب قيم العدد الحقيقي x
  - $f(x) = e^{-x} 2 \frac{e}{x}$  كما يلي:  $\mathbb{R}^*$  كما المعرفة على المجموعة (II
- $.\left(O;ec{i},ec{j}
  ight)$  التمثيل البياني للدالة f في المستوي المنسوب إلى المعلم المتعامد المتجانس الدالة  $\left(C_{f}
  ight)$ 
  - $\lim_{x\to +\infty} f(x)$  و  $\lim_{x\to +\infty} f(x)$ ،  $\lim_{x\to +\infty} f(x)$  و الآتية: رائية:  $\lim_{x\to +\infty} f(x)$  احسب النهايات الآتية: (1
- وضعية  $(C_f)$  بيّن أنّ المنحنى  $(\gamma)$  الذي معادلته  $y=e^{-x}-2$  والمنحنى  $y=e^{-x}-2$  ثم ادرس وضعية المنحنى  $(\gamma)$  بالنسبة إلى  $(\gamma)$ 
  - $f'(x) = \frac{-g(-x)}{x^2}$ : ابیّن أنّ : من أجل كل عدد حقیقي غیر معدوم (3) عدد عقیقي غیر معدوم
  - 4) استنتج أنّ الدالة f متزایدة تماما علی كل من المجالین [-1;0] و [-1;0] و متناقصة تماما علی المجال  $[-\infty;-1]$  ، ثم شكّل جدول تغیّرات الدالة  $[-\infty;-1]$
- $(\gamma)$  بين كيف يمكن إنشاء المنحنى  $(\gamma)$  انطلاقا من منحنى الدالة:  $x\mapsto e^x$  ثم ارسم بعناية كلا من المنحنيين ( $\gamma$ ) و ينفس المعلم السابق.
  - ليكن n عددا طبيعيا و A(n) مساحة الحيّز المستوي المحدّد بالمنحنيين  $C_f$  و والمستقيمين اللذين  $x=-e^{n+1}$  و  $x=-e^n$  معادلتيهما

$$l = A(0) + A(1) + \dots + A(2016)$$
 حيث العدد الحقيقي العدد الحقيقي

انتهى الموضوع الأول

#### اختبار في مادة: الرياضيات / الشعبة: علوم تجريبية / بكالوريا استثنائية 2017

## الموضوع الثاني

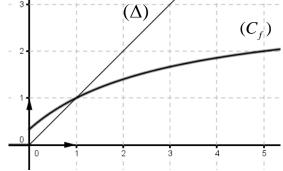
## التمرين الأول: (04 نقاط)

C(2;3;-1)، B(1;2;1)، A(-8;0;-2) نعتبر النقط  $(0;\vec{i},\vec{j},\vec{k})$  الفضاء منسوب إلى المعلم المتعامد والمتجانس  $(0;\vec{i},\vec{j},\vec{k})$  نعتبر النقط (P) والمستوي (P) ذا المعادلة: (P)

- اً) بيّن أنّ النقط  $B \cdot A$  و C تعيّن مستويا.
- ب) عيّن قيمة العدد الحقيقي  $\alpha$  حتّى يكون  $n(1;\alpha;-1)$  شعاعاً ناظما للمستوي  $\alpha$  ثم عيّن معادلة ديكارتية له.
  - ( $\Delta$ ) بيّن أنّ المستويين (ABC) و (P) يتقاطعان وفق مستقيم ( $\Delta$ )، ثمّ تحقّق أنّ النقطة  $\vec{u}$  تنتمي إلى ( $\vec{u}$ ) و ( $\vec{u}$ ) شعاع توجيه له.
- لتكن النقطة G مرجح الجملة  $\{(A;1),(B;-2),(C;3)\}$ ، نرمز ب $\{(A;1),(B;-2),(C;3)\}$  من الفضاء التي تحقق:  $(\overline{MA}-2\overline{MB}+3\overline{MC})\cdot(\overline{MB}-\overline{MC})=0$

عيّن إحداثيات النقطة G ، ثمّ حدّد طبيعة المجموعة  $\Gamma$  واكتب معادلة ديكارتية لها.

 $(\Gamma)$  و (ABC) ، (P) عين إحداثيات نقط تقاطع


## التمرين الثاني: (04 نقاط)

نعتبر الدالة f المعرّفة على  $[0;+\infty]$  كما يلي:  $f(x)=\frac{3x+1}{x+3}$  و  $f(x)=\frac{3x+1}{x+3}$  المعلم المتعامد والمتجانس f(i,j) والمستقيم f(i,j) ذا المعادلة f(i,j)

 $u_0=lpha$  عدد حقيقي موجب،  $(u_n)$  المتتالية العددية المعرّفة على  $\mathbb N$  بحده الأول عديث lpha

 $u_{n+1} = f(u_n) : n$  ومن أجل كلّ عدد طبيعي

- عیّن قیمة  $\alpha$  حتّی تکون  $(u_n)$  متتالیة ثابتة. (I
  - $\alpha = 5$  نضع في كل ما يلي (II
- ا انقل الشكل المقابل ثمّ مثّل على حامل محور الفواصل  $u_3$  (دون حساب الحدود) الحدود  $u_1$  ،  $u_2$  ،  $u_1$  ،  $u_2$  ،  $u_3$  ،  $u_4$  ،  $u_5$ 
  - $(u_n)$  ضع تخمينا حول اتجاه تغيّر المتتالية ضع تخمينا حول اتجاه تغيّر
- $v_n = \frac{u_n 1}{u_n + 1}$ :بعتبر المنتالية  $(v_n)$  المعرّفة على (2



- أ) برهن أنّ المتتالية  $(v_n)$  هندسية أساسها  $\frac{1}{2}$  يطلب تعيين حدّها الأول.
  - $\lim_{x\to +\infty} u_n$ عبّر بدلالة  $u_n$  عن  $v_n$  عن عن  $v_n$  عن  $v_n$  عن  $v_n$
  - $S_n = v_n + v_{n+1} + \dots + v_{n+2016}$ : حيث  $S_n$  المجموع (3

. 
$$S_n' = \frac{1}{u_n+1} + \frac{1}{u_{n+1}+1} + \frac{1}{u_{n+2}+1} + \dots + \frac{1}{u_{n+2016}+1}$$
 : ثمّ استنتج بدلالة  $n$  المجموع  $n$  عيث:

#### اختبار في مادة: الرياضيات / الشعبة: علوم تجريبية / بكالوريا استثنائية 2017

#### التمرين الثالث: (05 نقاط)

 $(O; \overrightarrow{u}, \overrightarrow{v})$  المستوي المركب منسوب إلى المعلم المتعامد والمتجانس

. 
$$z_C = 4 - 3i$$
 و  $Z_R = 1 + i$  ،  $z_A = -3 - 2i$  التي لاحقاتها  $C$  و  $B$  ،  $A$  و  $B$  ،  $A$ 

- . C عين النسبة وزاوية للتشابه المباشر S ذي المركز A والذي يحوّل النقطة والميانب النقطة المباشر B
  - ABC . مثم استنتج طبيعة المثلث الأسي العدد المركب العدد ال
- [AC] نرمز بـ G الى مركز ثقل المثلث ABC و بـ I الى منتصف القطعة G الى مركز عيّن كلاً من  $Z_I$  و لاحقتي النقطتين G و I ، ثمّ بيّن أنّ النقط G و I في استقامية.
  - . ABCD نعتبر النقطة D نظيرة B بالنسبة إلى I ، حدّد بدقة طبيعة الرباعى D
  - .  $\|\overrightarrow{MA} + \overrightarrow{MC}\| = 5\sqrt{2}$  نعتبر ( $\Gamma$ ) مجموعة النقط M من المستوي التي تحقق: ( $\Gamma$ ) نعتبر ( $\Gamma$ ) نعت
    - $(\Gamma)$  عين طبيعة المجموعة  $(\Gamma)$  ثم أنشئها

## التمرين الرابع: (07 نقاط)

- .  $f(x) = \frac{1 + 2\ln(2x+1)}{(2x+1)^2}$  : كما يلي:  $\left[ -\frac{1}{2}; +\infty \right] + \infty$  له الدالة العددية المعرّفة على المنسوب إلى المعلم المتعامد والمتجانس ( $C_f$ ) تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس ( $C_f$ )
  - . احسب النهايتين:  $\lim_{x \to +\infty} f(x)$ ،  $\lim_{x \to +\infty} f(x)$  احسب النهايتين: (1 احسب النهايتين) النهايتين بيانيا.
  - .  $f'(x) = \frac{-8\ln(2x+1)}{(2x+1)^3}$ ,  $\left[ -\frac{1}{2}; +\infty \right[ x \text{ at } x \text{ ot }$ 
    - . ادرس اتجاه تغیّر الدالهٔ f ثمّ شکّل جدول تغیراتها
  - . f(x) أَمّ استنتج إشارة f(x) = 0 المعادلة  $\left[ -\frac{1}{2}; +\infty \right]$  على في المجال أي المعادلة المعادلة على المجال أي المعادلة ا
  - $(C_f)$ يقبل نقطة انعطاف  $\omega$  يطلب تعيين إحداثييها، ثمّ انشى (4 يقبل نقطة انعطاف  $\omega$ 
    - .  $g(x) = 2[-x + \ln(2x + 1)]$  لتكن الدالة g المعرفة على  $g(x) = 2[-x + \ln(2x + 1)]$  كما يلي: (II
      - 1) أ) ادرس اتجاه تغير الدالة g.
  - 1,2 <  $\alpha$  < 1,3 : بيّن أنّ للمعادلة g(x) = 0 حلين أحدهما معدوم والآخر  $\alpha$  حيث: g(x) = 0 بين أنّ للمعادلة g(x) = 0 .
    - $I_n = \int\limits_n^{n+1} f(x) dx$ : 1 نضع من أجل كل عدد طبيعي n أكبر تماما من (2
    - $\lim_{n \to +\infty} I_n$  ثمن أجل كل  $\frac{3}{2}$  ،  $x \ge \frac{3}{2}$  ثم استنج -

انتهى الموضوع الثاني

# الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : علوم تجريبية /بكالوريا استثنائية : 2017

| العلامة |       | äulakti malie |
|---------|-------|---------------|
| مجموع   | مجزأة | عناصر الإجابة |

|       | الموضوع الأول |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|-------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|       |               | التمرين الأول: (04 نقاط)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 00.50 | 0.25×2        | $v_1 = \frac{11}{2}$ $v_1 = \frac{7}{4}(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|       | 00.50         | $u_{n+2} - u_{n+1} = \frac{3}{4} (u_{n+1} - u_n) $ (5 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 02.00 | 00.75         | $u_{n+2}-u_{n+1}>0$ : فرض $u_{n+1}-u_{n}>0$ ، و بالتالي: $u_{n+1}-u_{n}>0$ أي: $u_{n}-u_{0}>0$ ب) لدينا (ب                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|       | 00170         | إذن من أجل كل عدد طبيعي $u_{n+1}-u_n>0$ و $u_{n+1}-u_n>0$ متزايدة تماما.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|       | 00.75         | بنفس الطريقة نثبت أن $\left( \mathcal{V}_{n} ight)$ متناقصة تماما .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 00.75 | 0.25          | . هندسية $\left(w_{n}\right)$ من أجل كل عدد طبيعي $u_{n+1}=u_{n+1}-v_{n+1}=rac{3}{4}w_{n}:n$ هندسية (3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 00176 | 0.25×2        | . $w_0=-5$ عيث: $w_0=-5$ أساسها $w_0=-5$ و حدها الأول                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|       | 0.25          | لدينا المتتالية $(u_n)$ متزايدة تماما والمتتالية $(v_n)$ متناقصة تماما (4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 00.75 | 0.25×2        | . و $(v_n)$ و $(u_n)$ و $(u_n)$ و $\lim_{x\to +\infty}(u_n-v_n)=\lim_{x\to +\infty}w_n=\lim_{x\to +\infty}(-5)\left(\frac{3}{4}\right)^n=0$ و $(v_n)$ متجاورتین                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|       |               | التمرين الثاني: (04 نقاط)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 00.75 | 0.25×3        | الشعاعان $\overline{AB}(1,-2,0)$ و $\overline{AB}(1,-2,0)$ غير مرتبطين خطيا.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 00.75 | 0.75          | تبيين أنّ المستويين $(P)$ و $(ABC)$ غير متوازيين.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 00.75 | 0.75          | $\overline{AB}$ غير عمودي على $n(1,-2,2)$ أي إثبات أن الشعاع $n(1,-2,2)$ (ناظم لـ $n(1,-2,2)$ ) غير عمودي الترت أب المات المات شاء المات شاء المات أب المات المات شاء المات أب المات |  |
|       |               | التحقق أن الجملة المعطاة تمثيل وسيطي له $(ABC)$ التحقق أن الجملة المعطاة $(1=-2+lpha-3eta)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|       |               | $(lpha,eta)=(0,-1)$ تكافئ $\{1=6-2lpha+5eta\}$ لدينا:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 01.50 | 4             | $-1 = \beta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 01.50 |               | $2 = -2 + \alpha - 3\beta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|       | 0.5×3         | $(lpha,eta)=(1,-1)$ تکافئ $\left\{ -1=6-2lpha+5eta  ight.$ و $-1=eta-2lpha+5eta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|       |               | $4 = -2 + \alpha - 3\beta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| O     | •             | و $-4 = 6 - 2\alpha + 5$ تكافئ $(\alpha, \beta) = (0, -2)$ يان الجملة تمثيل وسيطي لـ $-4 = 6 - 2\alpha + 5\beta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|       |               | $\lfloor -2 = \beta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : علوم تجريبية /بكالوريا استثنائية : 2017

| العلامة |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| مجموع   | مجزأة           | عناصر الإجابة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 01.00   | 00.50           | : ( $\Delta$ ) ایجاد تمثیل وسیطی ال $\alpha$ : ( $\Delta$ ) : ( $\Delta$ ) ایجاد تمثیل وسیطی ال $\alpha$ : ( $\Delta$ ) ایجاد تمثیل وسیطی ال $\alpha$ : ( $\alpha$ ) ایجاد تمثیل وسیطی ال $\alpha$ : ( $\alpha$ ) ایجاد تمثیل وسیطی ال $\alpha$ : ( $\alpha$ ) ایجاد تمثیل وسیطی ال $\alpha$ : ( $\alpha$ ) ایجاد تمثیل وسیطی ال $\alpha$ : ( $\alpha$ ) ایجاد تمثیل وسیطی ال $\alpha$ : ( $\alpha$ ) ایجاد تمثیل وسیطی ال $\alpha$ : ( $\alpha$ ) ایجاد تمثیل وسیطی ال $\alpha$ : ( $\alpha$ ) ایجاد تمثیل وسیطی ال $\alpha$ : ( $\alpha$ ) ایجاد تمثیل وسیطی ال $\alpha$ : ( $\alpha$ ) ایجاد تمثیل وسیطی ال $\alpha$ : ( $\alpha$ ) ایجاد تمثیل وسیطی ال $\alpha$ : ( $\alpha$ ) ایجاد تمثیل وسیطی ال $\alpha$ : ( $\alpha$ ) ایجاد تمثیل وسیطی ال $\alpha$ : ( $\alpha$ ) ایجاد تمثیل وسیطی ال $\alpha$ : ( $\alpha$ ) ایجاد تمثیل وسیطی ال $\alpha$ : ( $\alpha$ ) ایجاد تمثیل وسیطی ال $\alpha$ : ( $\alpha$ ) ایجاد تمثیل وسیطی ال $\alpha$ : ( $\alpha$ ) ایجاد تمثیل وسیطی ال $\alpha$ : ( $\alpha$ ) ایجاد تمثیل وسیطی ال $\alpha$ : ( $\alpha$ ) ایجاد تمثیل وسیطی ال $\alpha$ : ( $\alpha$ ) ایجاد تمثیل وسیطی ال $\alpha$ : ( $\alpha$ ) ایجاد تمثیل وسیطی ال $\alpha$ : ( $\alpha$ ) ایجاد تمثیل وسیطی ال $\alpha$ : ( $\alpha$ ) ایجاد تمثیل وسیطی ال $\alpha$ : ( $\alpha$ ) ایجاد تمثیل وسیطی ال $\alpha$ : ( $\alpha$ ) ایجاد تمثیل وسیطی ال $\alpha$ : ( $\alpha$ ) ایجاد تمثیل وسیم ال $\alpha$ : ( $\alpha$ ) ایجاد تمثیل وسیم ال $\alpha$ : ( $\alpha$ ) ایجاد تمثیل وسیم ال $\alpha$ : ( $\alpha$ ) ایجاد تمثیل وسیم ال $\alpha$ : ( $\alpha$ ) ایجاد تمثیل وسیم ال $\alpha$ : ( $\alpha$ ) ایجاد تمثیل وسیم ال $\alpha$ : ( $\alpha$ ) ایجاد تمثیل وسیم ال $\alpha$ : ( $\alpha$ ) ایجاد تمثیل وسیم ال $\alpha$ : ( $\alpha$ ) ایجاد تمثیل وسیم ال $\alpha$ : ( $\alpha$ ) ایجاد تمثیل وسیم ال $\alpha$ : ( $\alpha$ ) ایجاد تمثیل و ایج |
|         | 00.50           | $\begin{cases} y=-rac{4}{5}+rac{3}{5}eta$ , $(eta\in\mathbb{R})$ : $(\Delta)$ $z=eta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 01.00   | 0.25×4          | المعرين المعاد. (30 عاد) $\{2;-1+\sqrt{3}i;-1-\sqrt{3}i\}$ و مجموعة حلول المعادلة المعطاة هي: $\{2;-1+\sqrt{3}i;-1-\sqrt{3}i\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | 0.25+0.5        | $z_C=\overline{z_B}=2e^{i\left(-rac{2\pi}{3} ight)}$ و بالنالي $z_B=2e^{irac{2\pi}{3}}$ (أ (1.11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | 00.50           | $:$ ب $OA = OB = OC = 2$ اون $ z_A  =  z_B  =  z_C  = 2$ إذن $ z_A  =  z_B $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         | 00.25           | النقط: $A$ ، $B$ و $C$ تنتمي إلى الدائرة التي مركزها مبدأ المعلم $O$ وطول نصف قطرها $C$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 02.00   | 00.50           | x=-1 . $x=-1$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | 00.50<br>3×0.25 | $.S: z' = \frac{1}{2}e^{i\frac{2\pi}{3}} \cdot z$ (أ (2) $.z_{C'} = 1$ ، $z_{B'} = e^{i\frac{4\pi}{3}}$ ، $z_{A'} = e^{i\frac{2\pi}{3}}$ . الإنشاء:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 02.00   | 00.25           | S . $S$ edeb icae $S$ edeb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         | 2×0.25          | $S_{ABC} = \frac{1}{4} S_{ABC} = 3\sqrt{3} \ cm^2 \ :$ ومنه $S_{ABC} = 12\sqrt{3} \ cm^2$ (ب                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         |                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| ٦.    | العلامة    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|-------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| مجموع | مجزأة      | عناصر الإجابة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|       | <b>J</b> . | التمرين الرابع : (07 نقاط)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|       | 00.25      | $\sigma(1) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 01.25 | 00.23      | $egin{array}{c cccc} x & -\infty & 1 & +\infty \\ \hline g(x) & - & 0 & + \\ \hline \end{array} : g(x) = 0 \ \ (1) = 0 \ \ (1) = 0 \ \ (1) = 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 01.23 | 00.5       | $x$ $-\infty$ $-1$ $+\infty$ $g(-x)$ استنتاج إشارة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|       | 00.5       | $g(-x)$ + $\phi$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 01.00 | 4×0.25     | $\lim_{x \to \infty} f(x) = +\infty$ ، $\lim_{x \to +\infty} f(x) = -2$ ، $\lim_{x \to \infty} f(x) = +\infty$ : ساب نهایات: $\lim_{x \to \infty} f(x) = -\infty$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|       |            | $x \xrightarrow{>>0}$ تبيين أنّ المنحنى $(\gamma)$ الذي معادلته $y = e^{-x} - 2$ و $y = e^{-x} - 2$ الذي معادلته $(\gamma)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|       | 00.50      | $\lim_{x \to -\infty} \left( f(x) - \left( e^{-x} - 2 \right) \right) = \lim_{x \to -\infty} - \frac{e}{x} = 0$ دراسة الوضع النسبي للمنحني $(C_r)$ و $(C_r)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 01.00 | 00.50      | x 0 +∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|       | 00.30      | $(\gamma)$ نحت $(C_f)$ فوق $(\gamma)$ فوق $(C_f)$ الوضيع النسبي لـ $(C_f)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 00.50 | 00.50      | $f'(x) = \frac{-g(-x)}{x^2}$ : لدينا $x$ لدينا الدينا عدد حقيقي غير معدوم $x$ لدينا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 00.75 | 00.50      | (4) إشارة $(x)$ هي عكس إشارة $(x)$ ومنه الدالة $f$ متزايدة تماما على كل من المجالين $g(-x)$ ومتاقصة تماما على المجال $g(-x)$ ومتاقصة تماما على المجال $g(-x)$ . $f$ $f$ . $f$ $f$ . $f$ $f$ $f$ . $f$ $f$ $f$ . $f$ $f$ $f$ . $f$ |  |  |
|       | 00.25      | $f(x)$ $2e-2$ $-\infty$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 01.50 | 00.5       | $-2\bar{j}$ طريقة رسم $(\gamma)$ : هو صورة منحنى الدالة $x\mapsto e^{-x}$ بالانسحاب الذي شعاعه $(\gamma)$ طريقة رسم $x\mapsto e^{-x}$ هو نظير منحنى الدالة $x\mapsto e^x$ بالنسبة الى محور التراتيب                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|       | 01.00      | رسم المنحنيين $(\gamma)$ و $(C_f)$ في نفس المعلم.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|       |            | مساحة الحيّز المستوي المحدّد بالمنحنيين $(C_f)$ و $(\gamma)$ و المستقيمين اللذين $x=-e^{n+1}$ و $x=-e^n$ معادلتيهما                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 01.00 | 00.50      | $A(n) = \int_{-e^{n+1}}^{-e^n} \left( f(x) - \left( e^{-x} - 2 \right) \right) dx = \left[ -e \ln  x  \right]_{-e^{n+1}}^{-e^n} = e(u.a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|       | 00.50      | $l = A(0) + A(1) + \dots + A(2016) = 2017e$ (u.a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |

## الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : علوم تجريبية /بكالوريا استثنائية : 2017

| العلامة |       | العلا | ä de Ni u edito |  |
|---------|-------|-------|-----------------|--|
|         | مجموع | مجزأة | عناصر الإجابة   |  |

|       | الموضوع الثاني |                                                                                                                                                                                                                                                                                        |  |
|-------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|       |                | التمرين الأول: (04 نقاط)                                                                                                                                                                                                                                                               |  |
|       | 00.25          | و $\overrightarrow{AC}$ و $\overrightarrow{AC}$ غير مرتبطين خطيا ومنه $\overrightarrow{A}$ ، $\overrightarrow{A}$ و $\overrightarrow{A}$ تعين مستويا.                                                                                                                                  |  |
| 1.250 | 00.7           | $(1, \alpha, 1) \cdot (ADC) = (1, 1) \cdot (1, \alpha, 1) \cdot (1, \alpha, 1)$                                                                                                                                                                                                        |  |
|       | 00.5<br>00.50  | lpha=-3 ب) تعيين قيمة $lpha$ حتى يكون $n(1;lpha;-1)$ شعاعاً ناظما للمستوي $lpha=-3$ : نجد $lpha=-3$                                                                                                                                                                                    |  |
|       |                | $x-3y-z+6=0$ هي: (ABC) المعادلة الديكارتية لـ $\overline{\qquad}$                                                                                                                                                                                                                      |  |
|       | 00.25          | المستويين (ABC)و (P) متقاطعان وفق مستقيم ( $n_p$ : ( $\Delta$ ) المستويين (ABC)و ( $n_p$ غير مرتبطين خطيا.                                                                                                                                                                             |  |
| 01.00 | 00.25          | $E \in (P)$ و $E \in (ABC)$ تنتمي إلى $E \in (ABC)$ و $E \in (P)$                                                                                                                                                                                                                      |  |
|       | 2×0.25         | $\overrightarrow{u}\cdot\overrightarrow{n_{P}}=0$ و $\overrightarrow{u}\cdot\overrightarrow{n}=0$ و ا $u\cdot\overrightarrow{n}=0$ شعاع توجیه لـ $u\left(1;-2;7 ight)$                                                                                                                 |  |
|       | 00.25          | . $(-2,\frac{5}{2},-\frac{7}{2}):G$ المنقطة (3) إحداثيات النقطة                                                                                                                                                                                                                        |  |
| 01.00 | 00.25          | المجموعة $(\Gamma)$ هي المستوي الذي يشمل $G$ و $\overrightarrow{	ext{CB}}$ ناظمي له.                                                                                                                                                                                                   |  |
|       | 00.50          | $(\Gamma)$ معادلة ل $2x+2y-4z-15=0$                                                                                                                                                                                                                                                    |  |
|       | 00.50          | (4 نقط تقاطع (P) و (ABC) و ( <i>P</i> )                                                                                                                                                                                                                                                |  |
| 00.75 | 00.50          | $[(ABC)\cap(P)]\cap(\Gamma)=(\Delta)\cap(\Gamma)=\{H\}$                                                                                                                                                                                                                                |  |
| 00170 | 00.25          | $H\left(\frac{1}{10}, \frac{14}{5}, -\frac{23}{10}\right)$ 9                                                                                                                                                                                                                           |  |
|       |                |                                                                                                                                                                                                                                                                                        |  |
| 00.50 | 00.50          | التمرين الثاني: $(04)$ نقاط) $\alpha=1$ ثابتة من أجل: $\alpha=1$                                                                                                                                                                                                                       |  |
| 00.50 | 4×0.25         | رياً المثيل الحدود $u_1$ ، $u_2$ ، $u_1$ ، $u_2$ ، $u_3$ ، $u_2$ ، $u_1$ ، $u_2$ ، $u_3$ ، $u_3$ ، $u_4$ . (1) أن تمثيل الحدود $u_1$ ، $u_2$ ، $u_3$ ، $u_4$ ، $u_5$ ، $u_5$ .                                                                                                         |  |
| 01.50 |                |                                                                                                                                                                                                                                                                                        |  |
|       | 2×0.25         | ب) التخمين: المتتالية $(u_n)$ متناقصة تماما و متقاربة نحو 1.                                                                                                                                                                                                                           |  |
|       | 2×0.25         | $\mathbf{v}_0 = \frac{\mathbf{u}_0 - 1}{\mathbf{u}_0 + 1} = \frac{2}{3}$ : و حدها الأول هو $\frac{1}{2}$ و حدها الأول هو ( $\mathbf{v}_n$ ) متتالية هندسية أساسها                                                                                                                      |  |
| 01.25 |                | $(2(1)^n - 2(1)^n)$                                                                                                                                                                                                                                                                    |  |
|       | 3×0.25         | $\lim_{y \to 1} \frac{1 + \sqrt{2}}{3} = \frac{3 + 2\sqrt{2}}{2}$                                                                                                                                                                                                                      |  |
|       |                | $\lim_{x \to \infty} u_n = 1  \text{`}  u_n = \frac{1 + \frac{2}{3} \left(\frac{1}{2}\right)}{1 - \frac{2}{3} \left(\frac{1}{2}\right)^n} = \frac{3 + 2\left(\frac{1}{2}\right)}{3 - 2\left(\frac{1}{2}\right)^n}  \text{``}  v_n = \frac{2}{3} \left(\frac{1}{2}\right)^n  (\because$ |  |
|       | 00.50          | $3(1)^n \left[ 1 (1)^{2017} \right]$                                                                                                                                                                                                                                                   |  |
| 00.75 |                | $S_n = v_n + v_{n+1} + \dots + v_{n+2016} = \frac{3}{4} \left(\frac{1}{2}\right)^n \left[1 - \left(\frac{1}{2}\right)^{2017}\right] $ (3)                                                                                                                                              |  |
|       | 00.25          | $\mathrm{S}'_{\mathrm{n}} = -rac{1}{2} (\mathrm{S}_{\mathrm{n}} - 2017)$ : $S'_n$ المجموع $n$ المجموع                                                                                                                                                                                 |  |
|       |                | £                                                                                                                                                                                                                                                                                      |  |
|       |                |                                                                                                                                                                                                                                                                                        |  |

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : علوم تجريبية /بكالوريا استثنائية : 2017

العلامة

|          | مجزأ  | عناصر الإجابة                                                                                                                                   |
|----------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 00.75 3> |       |                                                                                                                                                 |
| 00.75 3> |       | التمرين الثالث: (05 نقاط)                                                                                                                       |
| 00.75    | ×0.25 | راوية له. $\sqrt{2}$ العبارة المختصرة للتشابه $z_{ m C}-z_{ m A}={ m ke}^{{ m i}\theta}(z_{ m B}-z_{ m A})$ : راوية له.                         |
| 2>       | ×0.25 | $\frac{Z_{A} - Z_{B}}{Z_{A}} = -i = e^{-i\frac{\pi}{2}}$ (2)                                                                                    |
| 01.00    | 0.5   | $z_{ m C} - z_{ m B}$ المثلث $ABC$ متساوي الساقين و قائم في $B$ .                                                                               |
| 2        | ×0.25 | $z_{I} = \frac{z_{A} + z_{C}}{2} = \frac{1}{2} - \frac{5}{2}i \qquad z_{G} = \frac{z_{A} + z_{B} + z_{C}}{3} = \frac{2}{3} - \frac{4}{3}i  (3)$ |
| 01.00    |       | 1                                                                                                                                               |
| 0        | 0.50  | تبيان أنّ النقط $G$ ، $B$ و $I$ في استقامية: $\frac{z_G - z_I}{z_B - z_I} = \frac{1}{3}$ (تقبل أي طريقة أخرى)                                   |
| 01.00 0  | 1.00  | 4) - طبيعة الرباعي ABCD هو مربع                                                                                                                 |
| 0        | 0.50  | $\left\ \overrightarrow{CA}\right\  = \left z_A - z_C\right  = 5\sqrt{2}$ :( $\Gamma$ ) تنتمي إلى $C$ تنتمي إلى ( $T$ ) أ) نتحقق أن النقطة      |
| 01.25    | 0.50  | $IM = \frac{5\sqrt{2}}{2}$ ب $M\overrightarrow{A} + \overrightarrow{MC} = 5\sqrt{2}$ ب $M\overrightarrow{A} = 5\sqrt{2}$                        |
| 0        | 0.25  | المجموعة $(\Gamma)$ هي الدائرة التي مركزها $\Gamma$ ونصف قطرها $\frac{5\sqrt{2}}{2}$ .                                                          |
|          |       | التمرين الرابع: (07 نقاط)                                                                                                                       |
| 01.00    | 25×2  | $\lim_{x \to +\infty} f(x) = 0 \qquad \text{,} \qquad \lim_{x \to -\frac{1}{2}} f(x) = -\infty \text{ (1 (.1))}$                                |
|          | 25×2  | $+\infty$ المنحني يقبل مستقيمين مقاربين معادلتيهما $x=-rac{1}{2}$ و $y=0$ بجوار                                                                |
| +(       | 00.50 | و إشارتها $f'(x) = \frac{-8\ln(2x+1)}{(2x+1)^3}$ ، $\left[-\frac{1}{2}; +\infty\right]$ و إشارتها (2                                            |
| 0        | 0.25  | $(2x+1)^3$ $\downarrow$ 2 $\downarrow$                                                                                                          |
| 01 50    |       | ب- اتجاه التغير:                                                                                                                                |
|          | ×0.25 | . $\left[0,+\infty ight[$ متزايدة تماما على المجال $\left[-rac{1}{2},0 ight]$ و متناقصة تماما على المجال $f$                                   |
|          | 0.25  | - جدول التغيرات                                                                                                                                 |
|          |       | $f(x)=0$ المعادلة $-\frac{1}{2}$ ; + $\infty$ المعادلة (3                                                                                       |
| 0        | 0.50  | ] <del>'</del> L                                                                                                                                |
|          |       | $x = \frac{1}{2} \left( \frac{1}{\sqrt{e}} - 1 \right)$ معناه $f(x) = 0$                                                                        |
| 00.75    | Ť     | f(x) إشارة $f(x)$                                                                                                                               |
|          |       | $x = \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \left( \frac{1}{\sqrt{e}} - 1 \right) & +\infty \end{bmatrix}$                                  |
| 0        | 0.25  | f(x) - 0 +                                                                                                                                      |
|          |       |                                                                                                                                                 |

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : علوم تجريبية /بكالوريا استثنائية : 2017

| العلامة |        | " 1 211 10-                                                                                                                                                                                                                                     |
|---------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| مجموع   | مجزأة  | عناصر الإجابة                                                                                                                                                                                                                                   |
|         | 00.25  | $f''(x) = \frac{16(-1+3\ln(2x+1))}{(2x+1)^4} \cdot \left[ -\frac{1}{2}; +\infty \right] $ $(4)$                                                                                                                                                 |
|         | 00.25  | $x = \frac{e^{\frac{1}{3}} - 1}{2}$ يكافئ: $f''(x) = 0$                                                                                                                                                                                         |
|         | 00.25  | $\begin{array}{c cccc} x & -\frac{1}{2} & \frac{e^{\frac{1}{3}}-1}{2} + \infty \\ \hline f''(x) & - & 0 & + \end{array}$                                                                                                                        |
| 01.75   | 00.25  | $(rac{\mathrm{e}^{rac{1}{3}}-1}{2};rac{5}{3}\mathrm{e}^{-rac{2}{3}}):$ إذن المنحنى $(C_f)$ يقبل نقطة انعطاف $\omega$ إحداثياتًا                                                                                                             |
|         |        | انشاء المنحنى $(C_f)$ .                                                                                                                                                                                                                         |
|         | 00.75  | $(C_f)$                                                                                                                                                                                                                                         |
|         | 00.25  | $g'(x) = \frac{2(1-2x)}{(2x+1)},  -\frac{1}{2}; +\infty$ at $x \in \mathbb{Z}$ (1 ( .II                                                                                                                                                         |
|         | 2×0.25 | $\left[\frac{1}{2};+\infty\right[$ و متناقصة تماما على المجال $\left[\frac{1}{2};\frac{1}{2}\right]$ و متزايدة تماما على المجال $g$                                                                                                             |
| 01.50   | 00.50  | 1,2 <lpha<1,3< math=""> ب-المعادلة <math>g(x)=0</math> تقبل حلين أحدهما معدوم والآخر ويث:</lpha<1,3<>                                                                                                                                           |
|         | 00.25  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                           |
| 00.50   | 00.25  | $0 < f(x) < \frac{1}{2x+1}$ ، $x \ge \frac{3}{2}$ کی راثبات آن: من أجل کل $\frac{3}{2}$ د منه $\frac{1}{2x+1}$ ، $\frac{3}{2}$ من أجل کل $\frac{3}{2}$ ، $\frac{3}{2}$ د منه $\frac{3}{2}$ د منه أجل کل کار |
|         | 00.25  | . $\lim_{n \to +\infty} I_n = 0$ و بالتالي: $0 < I_n < \frac{1}{2} \ln \left( \frac{2n+3}{2n+1} \right)$ لدينا                                                                                                                                  |