الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: جوان 2014

امتحان بكالوريا التعليم الثانوي

الشعب: آداب وفلسفة، لغات أجنبية

المدة: 02 سا و30د

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين الموضوع الأول

التمرين الأول: (05 نقاط)

- 1) عين باقي القسمة الاقليدية للعدد 28 على العدد 9
 - $10^{k} = 1[9] : k$ عدد طبیعی $k = 10^{k} = 10^{k}$
 - $4 \times 10^4 + 3 \times 10^3 + 2 \times 10^2 + 28 \equiv 1[9]$ استنتج أنّ: [9] استنتج
 - $2^3 \equiv -1[9]$ أ) نحقَق أنّ: [9]
- ب) عين الأعداد الطبيعية n بحيث: $[9] \equiv 1 2^{6n} + n 1$

التمرين الثاني: (06 نقاط)

عين الاقتراح الصّحيح الوحيد من بين الاقتراحات الثلاثة، في كلّ حالة من الحالات الأربعة الآتية، مع التعليل:

: هو (u_n) متتالية حسابية أساسها 3 وحدّها $u_2=1$ الحد العام للمتتالية (u_n) هو (u_n)

$$u_n = -5 + 3n$$
 ($u_n = 7 + 3n$ ($u_n = 1 + 3n$ ()

$$u_n = 7 + 3n$$
 ($\dot{}$

$$u_n = 1 + 3n \qquad (1)$$

(2) عدد طبیعي . المجموع $(n+2+3+\cdots+n)$ یساوي :

$$\frac{n^2+1}{2}$$
 (÷

$$\frac{n^2+1}{2} \quad (\Rightarrow \qquad \frac{n(n-1)}{2} \quad (\because \qquad \frac{n^2+n}{2} \quad ()$$

$$\frac{n^2+n}{2}$$
 (i

 $x + 1 \cdot x \cdot x - 2$ عدد حقيقي. تكون الأعداد $x + 1 \cdot x \cdot x - 2$ بهذا الترتيب حدودا متعاقبة لمتتالية هندسية

$$x = -2$$
 (\Rightarrow $x = 5$ (\Rightarrow

$$x = 5$$

$$x = 3$$
 (ا کان: ا

 (v_n) متتالیة هندسیة معرفهٔ علی \mathbb{N} مدها العام $v_n = 2 \times 3^{n+1}$ العام المتتالیة. (v_n) هو:

التمرين الثالث: (09 نقاط)

 $f(x) = \frac{2x+1}{x+2}$: كما يلي $\mathbb{R} - \{-2\}$ على على الدالة العددية المعرّفة على f

 $\cdot \left(O; \vec{i}, \vec{j} \right)$ سامتنى الممثل للدالة f في المستوي المنسوب إلى المعلم المتعامد المتجانس $\left(C_{f} \right)$

$$f(x) = \alpha - \frac{3}{x+2}$$
: $\mathbb{R} - \{-2\}$ نم من أجل كل x من أجل من أجل من العدد الحقيقي α

- . عين النقط من المنحنى (C_f) التي إحداثياتها أعدادًا صحيحة.
- (3) احسب نهایة الدالة f عند کل حد من حدود مجالی تعریفها.
- $f'(x) = \frac{3}{(x+2)^2}$: $\mathbb{R} \{-2\}$ من x عدد حقیقی x من أجل كل عدد حقیقی (1)

(f الدّالة المشتقّة للدالة f')

- ب) شكّل جدول تغيّرات الدالة f .
- 5) عين إحداثيات نقط تقاطع المنحنى (C_f) مع حاملي محوري الإحداثيات.
 - -1 أ) اكتب معادلة المماس (Δ) للمنحنى (C_f) عند النقطة A ذات الفاصلة (Δ)
 - \cdot (Δ) بيّن أنّه يوجد مماس آخر (Δ) للمنحنى (C_f) يوازي المستقيم (Δ).
 - (C_{ℓ}) ارسم المماس (Δ) والمنحنى (C_{ℓ}).

ازية (12) مسابقة منسبة معرفة على الاستند العلم (14) عند السر المسابقة المسابقة (14) عن ا

المسوضوع الثاني

التمرين الأول: (06 نقاط)

 v_3 احسب: v_1 ، v_2 و v_3

 $u_n = v_n + 1$ نضع من أجل كل عدد طبيعي n ؛ n غدد طبيعي (2

 $u_0 = 2$ وحدها الأول q = 5 أ- بيّن أنّ (u_n) متتالية هندسية أساسها

n بدلالة u واستنتج u بدلالة u

ج- حلّل العدد 1250 إلى جداء عوامل أوليّة واستنتج أنّه حد من حدود المتتالية (u)

 $S_n = u_0 + u_1 + \dots + u_{n-1} : S_n = u_0 + u_1 + \dots + u_{n-1} : (3$

 $S'_{n} = v_{0} + v_{1} + \dots + v_{n-1} : S'_{n} = v_{0} + v_{1} + \dots + v_{n-1} : v_{n-1$

التمرين الثاني: (06 نقاط)

عين الاقتراح الصحيح من بين الاقتراحات الثلاثة في كلّ حالة من الحالات الخمسة مع التبرير:

	الاقتراح (أ)	الاقتراح (ب)	الاقتراح (ج)
1 عدد قواسم العدد 1435 هو:	8	5	2
وذا كان $a = -1[8]$ فإنّ باقي قسمة a على 2	-1	7	6
3 العددان 1435 و 2014 متوافقان بترديد:	2	4	3
y = 2[5] و $x = 2[5]$ فإن:	$x^9 + y^9 = 3[5]$	$x^9 + y^9 \equiv 2[5]$	$x^9 + y^9 \equiv 4[5]$
5 لدينا [6] 21 = 27 إذن:	9 = 7[6]	9 = 7[2]	9 = 7[3]

التمرين الثالث: (08 نقاط)

نعتبر الدالة العددية f المعرفة على \mathbb{R} بتمثيلها البياني (C_f) في المستوي المنسوب إلى المعلم المتعامد المتجانس $O(\vec{i},\vec{j})$ و $O(\vec{i},\vec{j})$ مماس المنحنى $O(\vec{i},\vec{j})$ عند النقطة $O(\vec{i},\vec{j})$ كما في الشكل:

I) بقراءة بيانية:

- $+\infty$ عند ∞ وعند $+\infty$
- 2) أدرس اتجاء تغير الدالة f على \mathbb{R} وشكل جدول تغير اتها.
 - (T) أ) اكتب معادلة للمماس (3
- (T) ادرس وضعیة (C_f) بالنسبة للمماس (C_f) ادرس وضعیة ثمّ استنتج أنّ A هي نقطة الانعطاف للمنحنى
 - f(x) > 5 عين حلول المتراجحة: 5
 - \mathbb{R} إذا علمت أنّ f معرفة على \mathbb{R} بالشكل:

. حيث: a عددان حقيقيان $f(x) = x^3 + ax^2 + b$

- 1) عين العددين a و b
- 2) تحقق من صحة إجاباتك السابقة حول:
 - أ) اتجاه تغير الدالة f
 - (T) معادلة المماس
 - A نقطة الانعطاف A
 - f(x) > 5:

	New Chare	
العلامة مجزأة مجموع		عناصر الإجابة
مجموع	مجرره	A &
		الموضوع الأول
		التمرين الأول: (05 نقاط)
	1	1) باقي القسمة الاقليدية للعدد 28 على العدد 9 هو 1
	2×0.5	$10^k \equiv 1[9]$ ومنه $10^k \equiv 1[9]$ ومنه (2
05	2×0.5	$4 \times 10^4 + 3 \times 10^3 + 2 \times 10^2 + 28 \equiv 4 + 3 + 2 + 1[9]$ (3) $\equiv 1[9]$
	1	$2^3 + 1 = 9 \equiv 0[9]$ لأن: $2^3 = -1[9]$ (أ (4
	1	$k \in \mathbb{N}$ حيث $n = 9k$: $n = n$ تعيين قيم $n = 9k$
		التمرين الثاني: (06 نقاط)
	0.5	$u_n = -5 + 3n$ (جواب الصحيح: ج) الجواب الصحيح بالصحيح بالم
	1	$u_n = -5 + 3n$ أو 2 تحقق: $u_n = u_2 + (n-2)r$ التعليل
06	0.5	$\frac{n^2+n}{2}$ (أجواب الصحيح: أ
	1	$1+2+3++n=\frac{n(n+1)}{2}=\frac{n^2+n}{2}$: التعلیل :
	0.5	x=-2 (جواب الصحيح: ج) $x=-2$
	1	$x = -2$ تكافئ $x^2 = (x+1)(x-2)$: التعليل :
	0.5	4. الجواب الصحيح: ب) 3
	1	$v_{n+1} = 3v_n$: التعليل
		التمرين الثالث: (09 نقاط)
	0.5	$\alpha = 2$ (1
		$x \in \{-5; -3; -1; 1\}$ ومنه $\{-3; -1; 1; 3\}$ هي: $\{-3; -1; 1; 3\}$ ومنه $x + 2$ (2
09	4×0.25	
	2×0.5	$\lim_{x \to +\infty} f(x) = 2 \text{o} \lim_{x \to -\infty} f(x) = 2 (3)$
	2×0.5	$\lim_{x \to -2} f(x) = -\infty \text{im} f(x) = +\infty$
	2×0.25	التفسير الهندسي: $x=-2$ و $y=2$ معادلتا مستقيمين مقاربين

المدة: 02سا و 30د

الشعبة: آداب وفلسفة+لغات أجنبية

اختبار مادة: الرياضيات

اختبار مادة: الرياضيات

الشعبة: آداب وفلسفة+لغات أجنبية

المدة: 02سا و 30د

العلامة		عناصر الإجابة
مجموع	مجزأة	حاصر الإجابة
		الموضوع الثاني
		التمرين الأول: (06 نقاط)
	0.75	$v_3 = 249 \cdot v_2 = 49 \cdot v_1 = 9$ (1)
	1	
	2×0.5	$v_n = 2 \times 5^n - 1 u_n = 2 \times 5^n (\hookrightarrow $
06	0.75	$1250 = 2 \times 5^4$ (\Rightarrow
	0.75	$u_4=1250$: $u_4=1250$ ومنه $u_4=1250$ ومنه $u_4=1250$
	1	$S_n = \frac{1}{2} (5^n - 1)$ (1)
	0.75	$S'_n = \frac{1}{2}(5^n - 1) - n$ (\hookrightarrow
		التمرين الثاني: (06 نقاط)
		1) الإجابة أ التبرير: 41×7×5= 1435 ومنه عدد القواسم 8=2×2×2 أو إيجاد مجموعة
	1+0.5	القواسم وعدّها
06	0.5+0.5	(2) الإجابة ب التبرير: [8] a = -1 ومنه [8] = a = -1
	0.5+0.5	(3) الإجابة ج التبرير: 193×3 = 1435 – 2014 ـ
	1+0.5	$y^9 = 2[5] = x^9 = 2[5]$ الإجابة ج التبرير: $y^9 = 2[5] = x^9 = 2[5]$ ومنه
	0.5+0.5	(5) الإجابة ب التبرير: [3×2]3×7≡3×9 ومنه [2]7≡9
		التمرين الثالث: (08 نقاط)
	0.5+0.5	$\lim_{X \to +\infty} f(X) = +\infty$ و $\lim_{X \to -\infty} f(X) = -\infty$ التخمين: $\lim_{X \to -\infty} f(X) = -\infty$
		2) اتجاه التغير: f متزايدة تماما على كل من $[0;\infty-[\ e\]\infty+;2]$ ، ومتناقصة تماما
	0.75	على [0;2]
	0.5	جدول التغيرات:
08	0.75	-3 معادلة $(T): y = -3x + 6$ معرف بنقطتين أو بنقطة ومعامل التوجيه 3 (3
		(T) على (C_f) ،]- ∞ ; 1[با المجال (C_f) أسفل (C_f) أعلى (T)
	0.50	A على المجال $]=1;+\infty$ و (C_f) يقطع (T) في
	0.25	نقطة الانعطاف: (T) يخترق (C_f) في A ومنه A نقطة الانعطاف
	0.5	4) مجموعة حلول المتراجحة هي]∞+;3[

المدة: 02سا و 30د	الشعبة: آداب وفلسفة+لغات أجنبية	اختبار مادة: الرياضيات
$ \begin{array}{c c} 0.5 + 0.5 \\ 1 \\ 0.5 \\ 0.75 \\ 0.5 \end{array} $	$-\infty + 0 - 2 + +\infty$ وإشارته $-\infty + 0 - 0 - 0 + \infty$ وإشارته $-\infty + 0 - 0 + \infty$ ومتناقصة تماما على $-\infty + 0 = 0$ من $-\infty + 0 = 0$ ومتناقصة تماما على $y = -3x + 6 = 0$	$b = 5$ ، $a = -3$ (1 . II) $f'(x) = 3x^2 - 6x$ (أ (2) f متز ايدة تماما على كل f 1) +3 : (T) معادلة (T) معادلة (T) معادلة (T) و إلله جمعه ومنه $T'(x) = 6x - 6$ (عمله اله اله اله اله اله اله اله اله اله ا

صفحة ...4.../...4....